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Abstract

Understanding Search-Based Software Engineering
by

Paul William ”Will” McBurney
Master of Science in Computer Science

West Virginia University
Tim Menzies, Ph.D., Chair

Pareto Optimization is a method of finding the space of best solutions possible given multiple
class dimensions. In practice, however, it is difficult for users to visualize how solutions
are spaced across this multi-dimensional frontier. Existing algorithms like NSGA-IT are
capable of quickly finding the Pareto frontier. However, users cannot use these algorithms
to understand how changes to a solution effect the qualities of that solution.

In response to these issues, this paper presents "HOW?”. Not only is "HOW”
capable of finding the Pareto frontier across multiple dimensions, but HOW can also explain
how each point was derived, and compare points along the frontier to their neighbors. HOW
generates rules using a stochastic learner, then combines those rules into a subsumption
network via formal concept analysis. The network is augmented with statistics on the
training data selected by sub-networks. Users can navigate their decision space by walking
that network, selecting regions containing properties they want to avoid or encourage.
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Chapter 1

Introduction

1.1 Motivation

Software Engineering is a problem of trade-offs. In software engineering, you
can never perfectly meet the needs of every objective. A project is always going to have
costs that a manager wants to minimize with goals that may break the budget. Thus, it
is important to find the set of solutions, or space of solutions, that best optimize these
multiple objectives. This process is referred to as Search Based Software Engineering. This
thesis will focus on a methodology for finding this space of solutions.

According to Harman, solutions to a problem that reflect on the neighbourhood
are more useful than precise solutions that do no reflect on the neighbourhood[12]. Harman
refers to understanding a neighbourhood of solutions as an open and pressing issue in search-
based software engineering. ”[R]esearch on SBSE has tended to focus on the production of
the fittest possible results. However, many application areas require solutions in a search
space that may be subject to change. This makes robustness a natural second order property
to which the research community could and should turn its attention [12]”

This tells us that when we find solutions in search-based software engineering, we
want to properly explain the neighbourhood of our solution in detail. We want understand-
ing of how multiple solutions in a neighbourhood are related to one another, and in what

way.
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CHAPTER 1. INTRODUCTION 2

This is especially important when discussing the Pareto frontier. The Pareto
frontier is, by definition, a space of points which optimize multiple dimensions, not an
individual point. By analysing how these points were arrived at using the HOW algorithm
described within this document, we can create user understandable explanations of a space
without the decreased performance typically expected with explanation.

Multi-objective optimization is key in requirements engineering. The process of
requirements engineering is inherently multi-objective [26], since it involves trying to meet
the needs of multiple stakeholders with different, often conflicting goals [26]. Heaven say
multi-objective optimization ”can support decision making among large numbers of design
alternatives” [13]. Developing software is at minimum a bi-objective problem between the
competing objectives of cost and value [14]. In software engineering, developers often have
to choose which requirements to focus on to maximize customer value while minimizing
developer cost [14].

The next-release problem is a common example of multi-objective decision mak-
ing [30]. Zhang describes multi-objective analysis, explaining ”requirements engineering
is characterised by the presence of many complex and conflicting demands, for which the
software engineer must nd a suitable balance[30]”. The next-release problem is typically
viewed as bi-objective [30]. The goal is to select a subset of features to include in the next
release of a project that minimize cost to the developing firm, while maximizing the value
of the product being delivered [30].

In order to more empower a user to make decisions, especially in requirements
engineering, it will be useful to explain the frontier of multi-objective optimizations. When
a user is given an understanding of search space’s neighborhood, that user is capable of
making informed decisions about how to move across Pareto frontier. Giving the user this
information should help maximize their understanding and use of the solution space for
a problem. HOW was developed to do just this: add explanation and comparison to the
solution space of multi-objective optimization in order to help the user better understand

the options available.
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CHAPTER 1. INTRODUCTION 3

Harman, in describing the state of search-base software engineering, pointed out a
need for a deeper understanding of problems and solutions when he said, ” However, in order
to develop the mature roots that allow the eld to grow, the second phase of exploration
requires a deeper understanding of problem and solution characteristics[12].” HOW is an
attempt to meet that need by explaining the solution space, offering a user explanation
of how a particular solution was arrived at, and how that solution compares to related,
or neighbouring, solutions. In doing so, HOW seeks to help realize Harman’s goal [12] of
providing an understanding of the searching process, in order to maximize understanding

of the solution space.

1.2 Statement of thesis

HOW, an algorithm developed from WHICH[19], is designed to provide a solution
space in multi-objective optimization. However, unlike existing multi-objective optimizers
such as NSGA-II [1], HOW provides an explained general solution for each point found
along the Pareto frontier of a particular search space.

This thesis will show the potential for multi-objective optimization to allow ex-
planation without a degradation in results sometimes associated with explanation. It will

show that HOW is a capable multi-objective optimization learner

1.3 Contributions of this Thesis

The HOW algorithm and this thesis serve four primary purposes:

1. HOW expands the existing WHICH [19] algorithm to allow for multi-objective
optimization rather than single-objective optimization.

2. HOW can find the Pareto optimal frontier on existing test problems for multi-
objective optimization, showing it is satisfactory as an optimization tool.

3. HOW can provide a solution space with that can serve to illustrate the neigh-

bourhood of existing solutions, comparing them to similar or related solutions.
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CHAPTER 1. INTRODUCTION 4

4. HOW’s customizable fitness metric can be changed for different needs. This
thesis will study the effects of changing the heuristic scoring aggregate fitness function on
defect prediction.

We will show that HOW can be a high quality multi-objective optimization tool

that is capable of explaining the neighbourhood of its solution space.

1.4 Structure of this Thesis

The rest of the paper is structured as follows. Chapter 2 gives relevant background
information including where the data was acquired, a background on data mining and
multi-objective optimizaion. Chapter 3 explains the HOW algorithm, including how to
understand the output. Chapter 4 shows the results of various experiments on HOW,
including mathematical problem performance and defect prediction results. Chapter 5

summarizes the findings and their impacts, and suggest future work.
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Chapter 2

Related Work

2.1 Multi-Objective Optimzation

Multi-Objective optimization is a process where 2 or more objectives, frequently
conflicting, are optimized. It is usually impossible to derive a single solution where all
objectives are fully optimized[l]. Usually, there is a set of Pareto-optimal solutions, no
solution of which optimizes all objectives better than any other solution along the frontier
of Pareto-optimal solutions. A given point is Pareto-dominated when their exists another
point that optimizes all dimensions at least as well and at least one dimension better than
the original point. Most software engineering problems are multi-objective in nature[12]
(including defect prediction). Yet, while mapping the Pareto frontier is a useful visual tool
to help designers understand the trade-offs in the solution, there has not been as much work
in connecting the outputs to the input parameters selected. Veerappa notes that it is very
possible that two outputs which are similar may have wildly different input parameters, a
possibility the Pareto frontier of the solution space does not express well on its own|[26].

In Figure 2.1, we see an illustration of the Schaffer bi-objective problem’s Pareto-
optimal curve[2, 23]. In Schaffer, the goal is to minimize the two given objective functions|[1,
23]. The labeled point " A” is along the Pareto optimal curve. ”A” does not dominate, nor is
not dominated by, any solution along the curve. Point ”B” fails to optimize either objective

of Schaffer as well as ”A”, and is thus not part of the Pareto frontier. ”C” would dominate
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CHAPTER 2. RELATED WORK 6

F2(X) =(%-2)"2

0 0.5 1 15 2 2.5 3 3.5 4
F1(X) =X~2

Figure 2.1: A sample of a Pareto solution using the Schaffer problem

”A”, as well as much of the Pareto optimal curve. However, ”C” is not possible to acheive
with the given objective functions. A theoretical perfect point in multi-objective, where
all objectives are completely optimized, is frequently called ”heaven”. It’s very rare that a
point at heaven actually exists. Rather, the goal of finding new points in the Pareto optimal
region is to approach heaven. By contrast, the point where all objectives are completely
non-optimized can be called "hell”. In Figure 2.1, "heaven” would be the point of origin,
and "hell” would be (00, 00).

The major advantage of Pareto optimization is that a Pareto optimal frontier can
clearly illustrate the relationships between the objective functions. This frontier will help
a user understand the trade-offs in the objectis caused by altering the input vector. HOW
will take this one step farther by showing how the input maps to the output, allowing a
deeper understanding of how to move across the Pareto frontier.

Pareto optimization forms the basis for HOW’s multi-objective selection process.
This is in fitting with most existing multi-dimensional optimization techniques[1, 12, 22, 27,

32]. Pareto optimization is not capable of saying how much ”better” one solution is than

Ol Ll Zyl_ﬂbl
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CHAPTER 2. RELATED WORK 7

another, only that one solution is better than another[12].

Pareto optimization provides a space of solutions, allowing a human to choose
which point along the frontier may best optimize their needs in real world settings. HOW
seeks to empower this process by provided an explanation of the points along the frontier
to the user.

Pareto optimization is not the only solution to multi-objective optimization. An-
other common solution is the aggregate fitness function[12], which takes the multiple objec-
tive functions fi, ..., f» and adding them together with constant weights on each objective

to denote relative importance.

F =Y c¢fi(Z)
i=1

The goal would be to find the input vector Z that maximize F'. Objectives consid-
ered more important will have a larger value of ¢;. For example, in a hypothetical situation

with two objective functions, the fitness function may look like:

F = f1(Z) + 3 x fa(vecr)

This would imply that optimizing fs is three times as important as optimizing fi.
This function, however would mean that a large improvement in f; could be overshadowed
by a small drop in fs. This is the primary reason why Pareto optimization is generally
considered superior to an aggregate fitness algorithm [12]. By providing a space of solutions,
Pareto optimization is more likely to give a user better understanding the possible solutions

of the problem. The aggregate function can’t give this same picture.

2.2 Data Mining Metrics

Standard metrics for data mining need to be used to explain the performance
of HOW. This section will show the common measurements that can be used to explain
performance of classification. This section will not focus on the metrics of non-classification

optimization problems, since metrics used in those problems are typically specialized for
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CHAPTER 2. RELATED WORK 8

Predicted
False | True
False a b
Actual Trio - b

Table 2.1: Confusion Matrix

the data, or simply an average of an existing field. Any numeric metrics will be explained
alongside their relevant data.

It is first important to understand the confusion matrix. A confusion matrix breaks
down a test dataset where a classification method was applied. For each class, the number
of true negatives, false negatives, false positive, and true positives are calculated.[29] Table
2.1 is an example of a confusion matrix. Fach cell in the table is assigned a letter. The
variables a,b,c, and d are assigned respectively to true negative, false negative, false positive,
and true positive. [29]

Now that we have established the values, we can define our metrics[29] using the

variables a,b,c, and d.
pd = recall = d/(d+b)
pf = calsealarm = ¢/(a + ¢)
prec = precision = d/(c + d)
accuracy = (a+d)/(a+ b+ c+d)
support = (¢ + d)

For the purposes of this paper (and the HOW algorithm), support is simply the
sum of ¢ and d. Support will somtimes be mentioned as a percentage or records predicted

to be true over the number of all records, which can be calculated using the formula below.

support = (c+d)/(a+b+c+d)

www.manharaa.com




CHAPTER 2. RELATED WORK 9

When working with classification problems, one generally seeks to optimize pd,
prec, and accuracy. By contrast, pf is typically minimized, since you generally want a low
false alarm rate.

Pd and pf tend to be directly related. Generally, as pd increase, so too does
pf[19, 28]. Since we want to minimize pf, but maximize pd, these objectives tend to be in
direct conflict. The importance of optimizing individual metricss depends on the situation.
For example, on a security system, a low pd may be acceptable in order to keep pf low,
since false positives are more damaging than a false negative. Generally, projects can fall
into two groups: risk averse and cost averse. A risk averse system may tolerate a large false
alarm rate in order to ensure catch any major faults, such as human safety systems. Cost
averse systems are more limited by budget than by safety risks, and will usually tolerate
diminished pd in order to not waste energy and finances on false alarms.[19]

The advantage HOW provides is an allowance to maximize or minimize whichever
fields we deem important, and ignore those we don’t find important.

In defect prediction, we generally want to measure the number of defects and
number of lines of code[19]. While other static features can be use [19], I generally chose
these two for many of the experiments in Chapter 4. If we seek to classify all records in a
defect prediction data set, we want to divide the records into two groups: those that have
zero defects, and those that have one or more defects. When using classification on defect
prediction datasets, measure such as pd and pf typically refer only to classifying the class
with one or more defects. Unless otherwise mentioned in this article, assume all metrics on
classification refer only to classifying the class with one or more defects.

We can also use numeric metrics. For instance, we can get a sum of the number
of defects found, which we would seek to maximize, and a sum of the lines of code found,
which we would seek to minimize. The goal is to find as many defects as possible while

having to read through as few lines of code as possible.
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2.3 Defect Prediction

Defect Prediction is the process of trying to automate finding the location of defects
before a piece of software is used. Finding and correcting defects can be a very expensive
process in software engineering, so we want to automate this process in an attempt to reduce
cost of debugging. This has been attempted using data miners on historical examples, like
those found in the PROMISE repository[7]. Defect prediction can be defined as a multi-
objective optimization problem with several objectives. Ideally, a perfect rule (or, ”heaven”)
would be a rule that finds all defects without reading any lines of code, with zero false alarm
and perfect recall, precision, and accuracy. Of course, such a rule couldn’t reasonably exist,
since you would have to read at least some lines of code to find any defects. But this
hypothetical perfect lets us define which parameters we seek to maximize and which we
seek to minimize. We want to minimize false alarm and lines of code read (or effort). We
want to maximize the number of defects found, recall, precision, and accuracy.

There is no reason we have to use every single one of these traits in optimization.
We can select certain subsets of these objectives to serve as the utilities in an multi-objective
optimization.

Research into better methods of using machine learners for defect predictions is
wide-spread and varied. Yet despite this, overall performance has been relatively static.
Even in the midst of several modern, advanced learning algorithms, Naive Bayes tends to
provide benchmark results. [20].

The primary method of defect prediction is to learn on tables structured with
a defects column treated as a boolean value (where ”true” means the record has defects).
Then, in standard data mining practice, the non-target attributes are analyzed to see which
set of features may best predict the defect column.This form of classification learning will
not help show how many defects there are, only help isolate which modules the defects are

likely to occur in[20].
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2.4 WHICH

WHICH]19, 21] is aan associative rule-based learning algorithm with user config-
urable searching criteria. WHICH was developed to improve on the stochastic associative
rule learner TAR3[11, 21]. Milton criticized TAR3 as ”over-elaborate”, claiming that the
algorithm WHICH is more generalized, while still maintaining TAR3’s linear scalability [21].
HOW is an extension of Which that uses multi-objective optimization to find and explain
the Pareto-optimal solution space. The weakness of Which that HOW improves on is that
Which relies solely on a total aggregate function for optimization, effectively representing
several fields as one. Which makes no account of Pareto dominance, and thus isn’t capable
of showing a broad range of trade-offs. HOW, by contrast, provides the Pareto frontier
while clearly illustrating the trade-offs.

WHICH, like HOW, requires data to be discretized. In [19] Equal-Width dis-
cretization was used. In that study, the best results were found using 2-bin, 4-bin, and
8-bin discretization.[19].

WHICH maintains a stack of associative rules, which feature combination of ranges
in features. A scoring metric B; is used to sort the effectiveness of the rules. Bj is user
customizable[19, 21]. In [19], Which is used for defect prediction. The objective function of

the search, B; is define as

VPD2xa+ (1—PF)2x3+ (1—effort)2x~
Vot i

This optimization is a form of aggregate fitness function for multi-objective opti-

By =1-

mization. Unlike HOW, Which does not use Pareto optimization as a tool for multi-objective
optimization. This function output increases as PD increases, PF decreases, and effort de-
creases. PD and PF are defined the same was as they are in Section 2.2. Effort is defined as
the percentage of the code base predicted to be faulty, and which must be analyzed in more
detail by more expensive QA methods [19]. «, 3, and ~y serve as user-defined constants to

either emphasize or ignore individual attributes. [19] found the most success with
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a=1; §=1000; v=0

This design is to heavily penalize false alarms while still attempting to optimize
PD. Effort is ignored, as PF serves as a ”surrogate measure” (since false alarms have to be
analyzed in great detail along with the true positives).[19]

At the initial stage of Which, all rules are ”atomic,”[19] that is, they contain only
one element of one feature. Initially, which creates a list of atomic rules on all attributes
(but not on the class) to classify each possible target class. These rules are all initially
scored using the described multi-objective aggregate function. These rules can then be
combined (see Section ) to form more complex rules, which are in turn scored. The rules
are not combined exhaustively, as that would lead to an exponential runtime[21]. Rather,
the rules are combined stochastically, using the score of the aggregate fitness function as
a weighting feature. Rules with a larger score on the aggregate fitness function are more
likely to be selected than rules with lower scores. This is an attempt to bias the search
towards things believed to be more successful without creating complete blind spots that
may contain useful knowledge.

Which continues to combine rules together until one of two stopping conditions
are met. The first condition is after a very large number of total rounds have elapsed, since
it has been shown machine learning stops learning relevant new information after a time,
referred to as the ceiling effect[20]. The other stopping condition is to check if you have
gone a certain number of generations without improvement. This measure serves primarily
for efficiency, as if a learning algorithm is no longer improving, there is no reason to go as
many rounds as the first stopping condition requires.[21]

Which is structured as follows:

1) Discretize the input data.

2) Create a stack of rules. Generate possible atomic rules for each target class.

3) Stochastically select two rules from the stack, weighting your selection using
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CHAPTER 2. RELATED WORK 13

the By metric. Rules with a larger By metric are more likely to be selected.

4) Combine the selected rules, score the combination, and put the combination
into the stack.

5) Return to Step 3 until one of the exit condtions is met. The output is the stack
of generated rules.

HOW preserves this same basic algorithm layout. HOW primarily changes the
scoring function to allow for a score to be defined by multiple numeric values and metrics, not
just one. HOW does use an aggregate fitness function to determine the weighting heuristic
of a rule, but Pareto optimization is performed on the utilities vector which contains the set
of all objective values. How also allows a user to specificy multiple numeric fields as target
classes to be optimized or minimized. In defect prediction, success was found by minimizing
the lines of code read while maximizing the number of defects found.

Which generally performed very well across a wide variety of datasets using AUC (pd, ef fort)
(That is, the area under the pd-effort curve generated) from the stack of rules Which gen-
erated. Which-2 (that is, which using 2-bin discretization) "won”, in that it either had
the best results or it’s results were statistically comparable to the best results, in nine out
of ten of the dataset tests reported. It is worth noting that on the last dataset, Which-2
performed very poorly.[19] This poor performance, though an outlier, may explain a similar

phenomena that occurs in HOW, implemented later.

2.5 Next Release Problem

The Next Release Problem is an excellent example of a multi-object optimization
problem in which a firm designing a product tries to select the features to include in the next
release to maximize value and minimize cost[30]. All software firms have finite resources,
so finding how to best allocate these resources to maximize the value of a product is a
critical problem. Cost and value are conflicting objectives. The implementation of the

Next Release Problem is an excellent example of syntactically defining a multiple-objective
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problem, which is why, even though HOW does not test on the Next Release Problem, it
was included in this document. Using HOW to solve the Next Release Problem could prove
to be a worthwhile endeavour in the future. HOW’s use of stochastically combined rules
could provide very interesting insight into a given case of a Next Release Problem.

While it is possible to solve this problem using a single optimization ”Knapsack
Problem” implementation[30], there are several downsides to this approach. First, the
knapsack problem is hard-NP[6], which means very large knapsack problems become very
computationally expensive. Second, because the knapsack problem is, in essence, a single-
objective optimizer, the knapsack problem has to be recalculated for each set of parameters
tested. Multi-objective optimization, and Pareto dominance, provides a space of solution,
so accounting for possible parameter change becomes easier[30]. This is especially true with
HOW, which, in addition to finding the Pareto frontier of a space, explains the relationships
in the frontier neighborhood.

Zhang, et al. were the first to publish a paper formally notating the Next-Release
Problem as a multi-objective optimization problem[30]. The Next Release Problem was
defined as follows:

Assume for a given software system there exist a set of customers C' such that

C = {Cl, Coy ey Cm}

and a set of requirements R such that

R = {7“1,7’2, veey Tn}

All requirements are assumed to be independent.[30] Each requirement has an

associated cost, which is represented by

Cost = {costy, costa, ..., costy}

Each customer is weighted by the company differently.[30] The weight a company

put on each customer is represented by
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Weight = {w1,wa, ..., wn}

where

m
ij =1
7=1

Each customer uniquely weights the importance of each requirement. This value is
represented by value(r;, c;). If requirement customer ¢; is provided r;, then value(r;, ¢j) >
0. Otherwise, value(r;, ¢j) = 0.[30]

From these defintion, we can define a scoring function as

m
score; = ij * value(r;, ¢;)
j=1
The input vector is the set of requirements to be met. This is represented by ¥ =

{1, 22, .. 2, }€{0, 1} where z; = 1 denotes that r; will be included in the next release.[30].

We can now define the two competing abilities of value and score[30].

n
fi(@) = Z score; * x;
i=1

n
fo(2) = Z cost; x x;
i=1

The value of a particular solution is denoted by fi(#, and the cost of that solution
is fo(&). The goal, as stated before, is to maximize the value while minizing cost.

HOW is not tested using any Next Release Problems, however the principle of
multi-objective optimization to find a Pareto frontier is present. Zhang, et al,[30] were very
effective at creating a well-defined syntax and equation set for the Next Release Problem.
This serves as an excellent example of how to define existing problems not previously seen
having multiple objectives as multi-objective optimization problems.

Zhang’s, et al. solution is not the only attempt to solve the requirements prob-

lem, of course. Another solution provided by Karlson and Ryan relied on prioritizing the
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requirements base on the relationship between the cost and the value[14]. This method
derives the a cost and value measure, and plots it onto a chart. The section of the chart
with high value and lost cost is labelled "high” priority, whereas high cost and low value is
labelled ”low” priority. However, because the borders of these regions are definied by the
proportion of cost to value linearally, this isn’t a Pareto dominance solution. This is an

example of an aggregate fitness function solution.

2.6 Mathematical Models

There exist several mathematically defined multi-objective optimization problems
which serve as a proving ground for multi-objective optimizers[1, 5, 16, 23, 24, 25, 27, 31].
Tables defining these problem sets can be seen in Table 4.1 for unconstrained problems and
Table 4.2 for constrained problems. The difference between constrained and unconstrained
problems is constrained problems have one or more constraint functions which the input
vector must satisfy, in addition to limits on the individual inputs [1, 27]. These models are
tested with HOW in Chapter 4.

The unconstrained problems we have specific results for are Schaffer [23], Fonseca[5],
and Kursawe [16]. There are also results for the ZDT family of problems[31] not in this docu-
ment. Also included is an analysis of some constrained problems: Constr-Ex[1], Srinivas[24],
and Tanaka[25]..

All of these problems have two or more objective functions derived from an input
vector. In every multi-objective problem we analyze, the objective functions are to be
minimized[1, 27] The input vector can be as small as one dimension such as in Schaffer[23],
or as large as 30 dimensions in ZDT1 and ZDT2[31]. The size of the input vector affects
the complexity of finding the optimal frontier.

The dimensionality of the problem solution space, equal to the number of objective
functions[27] also affects complexity of finding the Pareto optimal frontier[l]. While all

problems cited above are bi-objective, there are other problems, like Water([33], which have
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more than 2 objectives. Water has 5 objective functions, and thus has a five-dimensional
solution space[33]. This thesis focuses on bi-objective functions because they are the easiest
to represent in charts and graphs.

These mathematical multi-objective problems were coded within the framework
of HOW. The data is generated randomly based on the constraints generated by HOW to

find the solution space. More detail on how this is accomplished is in Chapter 3.

2.7 NSGA-II

Several multi-objective optimizers exist[1, 2, 10, 12, 15, 18, 22, 32] that operate on
a variety of methodologies and principles. NSGA-II has become a very popular benchmark
in multiobjective optimization.[10, 15, 22]. It is that popularity that warrants a section
devoted to explaining how NSGA-II functions as a multi-objective optimizer.

NSGA-II (Nondominated sorting-base multi-objective evolutionary algorithm IT)
is an evolutionary algorithm designed to improve on NSGA[1]. NSGA was one of the first
evolutionary algorithms designed to find a space of Pareto optimal solutions in a single
simulation run[24].

NSGA used a nondominated sorting procedure level to rank Pareto dominance
of a dataset into a nondominated ranking. A ranking of 1 was a solution that was not
dominated. A ranking of 2 meant the point was dominated exactly once, a ranking of
3 meant it was dominated exactly twice, etc. The larger the ranking, the less fit the
solution was. NSGA essentially identifies the best Pareto optimization candidates using
this nondomination ranking method.[1]

NSGA, however, had three main problems that NSGA-2 sought to correct. The
first problem was a runtime on the order of O(M N3) where M is the number of objectives
and and N is the size of the input data. This was because in order to find the highest
ranked values, you had to compare every item in the data with everything other item for

each of M objects, which translated to O(M N?). To find the second highest ranked values,
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it was also O(M N?). Each ranking coulde be traced to that same upper bound. In a worst
case, there would be be an N number or rankings (where each ranking would only have one
element), meaning the process would be O(M N3).[1]

NSGA-II avoids this by initially, for each point in the data, creating two variables.
All the points are placed in the set P. The first variable, n,, is initialized to zero. n, keeps
track of how many points in the data dominates the point p. S, is the set of all points which
p dominates. To populate n, and S, for all points in P takes O(M N?) comparisons. After
this is done, each point in P with n, = 0 is non-dominated and in the first front. For each
p where n, = 0, S}, is iterated through and all points in .S}, have n, decremented. If after a
decrement an n, becomes zero, that solution is moved to the set (). Once this is complete
on the set P, the process is repeated on ) to find the third front, and continues from there.
This reduces the complexity of NSGA to O(M N?).[1]

NSGA lacked elitism, which was the second criticism that NSGA-II addressed.
Elitism is the practice in evolutionary algorithms of maintaining a ”best” population from
generation to generation. If a solution in a current generation is inferior to one or more so-
lutions in a previous generation, having elitism allows you to maintain the previous solution
and "throw out” the less valuable new one.[1]

The third criticism that NSGA-II tried to respond to was to remove the need for
specifying a share parameter, which was used to improve the ”spread” of the data. It was
desirable to remove this parameter, as it was a required user-defined value that greatly
impacted the results of NSGA. Automating the spreading was accomplished by using a
crowding-distance measure defined in NSGA-II. The crowding distance measure normalized
each objective function, sorting the data on that objective, and using the distance to the
two nearest neighbors as a crowding measure.[1]

The NSGA-II algorithm initially creates a random parent population of size n,
and assigns each member a fitness rank (as described above). From there, standard ge-
netic algorithm operators (such as combine, mutate, etc) are used to create the offspring

population of size n. The parent and offspring population are combined and sorted by non-
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denomination. After sorting by non-denomination, we sort each nondenomination rank by
the crowding-distance measure. We then take the top n items, choosing first the items with
the best nondenomination rank, then when the remaining spots in the next generation is
smaller than the size of the next nondenomiation rank, we selecte the items with the large
crowd-distance measure (this is to encourage spread across the frontier). NSGA-II can be

run for however many generations the user chooses. [1]

2.8 Discretization

HOW will require discretized input. Descritization is the process of taking numeric
data and converting the data into non-scalar discreet clusters. There are three primary
methods of discretization: equal-width, equal-frequency, and Fayyad-Irani[4].

Discretizing data adds another dynamic that can be measured. If you do not
discretize your data with a large enough number of bins, it’s possible you will lack the
detail to be able to accurately classify certain objects. However, if you discretize with large

numbers of bins, you run the risk of overfitting your solutions|28].

2.8.1 Equal-Width

Equal-width discretization is arguably the easiest to implement. Equal-width is
an unsupervised discretization method, meaning each attribute is discretized independently
of other attributes in the dataset, including the target class.[28]. To discretize one numeric
attribute, you first have to iterate through the data in that attribute to find the minimum
and maximum items. You can then assign that attribute to one of n bins. This process
takes linear time, since you only need to pass through the data twice. This is done by using
the following formula:

bin=———x%n
max — min

. Equal width does not generate equally populated bins unless the data is distributed evenly.

Bins can sometimes be completely empty depending on the data distribution . Having vast
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outliers can cause this form of discretization problems, as you can end up with several very
sparsely populated bins, incapable of providing enough support to reliably learn on. You
can also end up with a small number of vastly populated bins, which crowd out the rest of

the fields in the attribute.[28]

2.8.2 Equal-Frequency

Equal frequency is another form of unsupervised discretization. As the name
implies, the goal of equal frequency is to discretize an attribute in such as way that each
discretized bin is as near the same size to the other bins as possible. For example, if you
had 100 samples, and discretized your data to 10 bins, each bin would contain 10 samples
regardless of the data distribution.[28]

This is done by first sorting the data. Then, you simply find your bin size by
dividing the number of records in the attribute by the number of bins you want to have:

sizeofbins(insamples) = _n
#ofbins

This approach leaves you with more bins of consistent size. However if there are
natural ”gaps” in the data between multiple classification types, this form of discretization
may miss those. That said, it is still relatively easy to implement[28].

Table 2.2 gives a hypothetical case, showing how a given a set of numbers would
be discretized in both equal-width and equal-frequency. The table makes the assumption

that the given numeric set is being discretized to 2-bins.

2.8.3 Fayyad-Irani

Fayyad-Irani is the only supervised discretizer this paper will give attention to.
This form of discretization is supervised because it takes the target class into account in its
discretization[4]. That is, we don’t discretize a single numeric attribute in a vaccuum, we

take other attributes into account.
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Discretization
S; | Equal-Width (n = 2) | Equal-Frequency (n = 2)
0 Bin 1 Bin 1
15 Bin 1 Bin 1
22 Bin 1 Bin 1
23 Bin 1 Bin 1
27 Bin 1 Bin 1
31 Bin 1 Bin 1
40 Bin 1 Bin 1
44 Bin 1 Bin 2
46 Bin 1 Bin 2
61 Bin 2 Bin 2
63 Bin 2 Bin 2
80 Bin 2 Bin 2
92 Bin 2 Bin 2
100 Bin 2 Bin 2

Table 2.2: different unsupervised discretization methods on the hypothetical set S.

In Fayyad-Irani discretization, we sort the existing numeric attribute, then try to
find a spliting point that best reduces the entropy on both sides of the split of the target
class in the data[4]. The entropy is, more or less, a measure of how ”"mixed up” the target
class in the data is. The entropy formula is:

k
Ent(S) = — ZP(CZ', S)log(P(Cy, S))
i=1

In this formula, P(C;, S) means the proporation of samples in S that are of class
C;. k is the number of classes in the dataset S belongs too. Fayyad-Irani seeks to find the

split point to minimize the weighted sum of entropy on either side of the split. The goal is

to find the point that divides S into S; and S2[4].

S S,
E(A,T; S) = %Ent(&) + %Ent(é&)

Fayyad-Irani then recurses on S; and So, repeating the process until one of two

conditions are met. The first condition is having a ”"pure” set (where all elements in the set

are of the same class). The second condition is the Minimum Description Length Principle
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(or MDLP)[4]. In short, we stop when the Gain, the improvement in weighted entropy

generated by the split, is no longer substantial enough to warrant the split.

2.9 PROMISE data

The PROMISE! dataset provided the defect prediction data for all experiments.
PROMISE is a large software engineering database of volunteered project data. This data
is available for experimentation in various aspects of software engineering, including defect

prediction and effort estimation.

2.10 Formal Concept Analysis

Formal Concept Analysis[8, 9] is a way of mathematically grouping concepts into a
form of ordered structure. Formal Concept Analysis can be used to group objects together
based on common properties in order to better understand the structure of a space of
objects. A concept lattice is a product that can be derived using formal concept analysis.
The idea of a concept lattice is to graphically repreesnt objects and how they relate to other
attributes using a web structure.

For example, say we had the data in Table 2.3, which shows how common colors
are represented in an RGB scale. A check mark in a cell means that a color will need
at least some level of color from the column given (for example, Cyan is combined using
Green and Blue, but not red. Thus, Green and Blue are marked, and red is blank). From
this table, we can use a Concept Lattice to illustrate how each object (or color) is related
to other colors by the component colors. A concept lattice in Figure 2.2 generated using

Lattice Miner (described in the following section) illustrates these relationships.

1G. Boetticher, T. Menzies and T. Ostrand, PROMISE Repository of empirical software engineering data
http://promisedata.org/ repository, West Virginia University, Department of Computer Science, 2007
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Color Red | Green | Blue
Red X
Orange X
Yellow X
Green
Blue
Violet
Magenta
Black
White X X X

<
||

Table 2.3: Color Components

Orange White ¥ellow
[

Figure 2.2: Concept Lattice of Table 2.3
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2.11 Lattice Miner

Lattice Miner is a Java-based formal concept analysis tool designed to generate
concept lattices of an input database[17]. By simply writing a script that translates the
output rules into the proper Lattice Miner input file format, Lattice Miner can be used
to create a concept lattice based on our rules[17]. Advantages to using Lattice Miner
include user simplicity as well as easy to reproduce file structures (a major advantage in
scripting). It is also advantageous that Lattice Miner is Java-based, as this can run on
many platforms. Most importantly, Lattice Miner is a very fast way to generate a concept
lattice structure[17]. In using Lattice Miner, however, we have discovered that it limits
the number of rules and number of rule attributes, which indirectly limits the number of
dimensions you can optimize with HOW and still be able to produce a concept Lattice.
This is because optimizing on a larger number of dimensions creates a larger output rule
set, due to an increase in the size of the Pareto frontier of the rule space.

The input for Lattice Miner is a .Imb file. This file contains several key portions.

The first line, ”"LM_BINARY_CONTEXT” refers to the type of context our Lattice
Miner will use. Binary Context means that each attribute for a rule is defined by 1 if the
attribute is present, and 0 if that attribute is not. There are other contexts in Lattice
Miner, but we will only focus on Binary, since that is the only context that is relevant to
this project.

The next line list the name of all our records. We replace the name with parseable
information about the PD (recall), PF (false alarm rate), and PREC (precision) of our rules,
since these were the three dimensions we optimized on. This allows us to access a rule’s
score by using the name feature, which means there is no modification to Lattice Miner
needed. Each row name is separated by a | symbol.

The next line [which, in Figure 2.3, starts ”|$CAM:less-than-median” is the name
of each column. Each column refers to one atomic rule (that is, a rule with one element in

one attribute). For each row, any column where the rule contains that attribute is set to 1.
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LM BINARY CONTEXT

| PD:100 PF:100 PREC:71| PD:59 PF:57 PREC:71| PD:73 PF:62 PREC
:74| PD:12 PF:4 PREC:88| PD:53 PF:33 PREC:79| PD:92 PF:69 PREC
:76| PD:19 PF:6 PREC:87| PD:56 PF:35 PREC:79| PD:18 PF:5 PREC
:88| PD:11 PF:1 PREC:94| PD:28 PF:9 PREC:88| PD:7 PF:0 PREC
:100| PD:33 PF:10 PREC:88| PD:51 PF:13 PREC:91

| $CAM: less —than—median | $AVG.CC:more—than—median | $RFC:more—
than—median | $MOA:more—than—median | $CE:more—than—median |
$CBO: more—than—median | $LOC:more—than—median | $MFA:less —than
—median | $DIT:less —than—median | $NPM:more—than—median | $NOC
:more—than—median | $CBM: less —than—median | $MAX CC:more—than—

median | $MAX CC: less —than—median
0000O0O0O1TO0O1T0O0O0O0O
0000001010001O0
100000001 01O0O00O0
01 00001010O00O0O
0000000O01010O00O0
0011110000O00O0O0
0000001000O0O0O0O
0000000101 001O0
0000O00OO0OO0O10O0O0OO0O
000000O0O0O010O0O00O
000000O0O0DO0O01O0O00O0
0000O00O0OO0OO0OO1TO0OO
000000O0O0OO0O0O0O0O0T1
000000O0ODO0DO0DO0O0OO0OT1T1

Figure 2.3: A sample .Imb file
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Lattice Mir
File Edit Lattice Rules Context Window About

AEERredaaua  BE

Context : velocity (1)

Context : velocity (1)
SCAMess... $AVG_CC:.. SRFCmor... SMOAmor. sceimore- scB0mor. socimor, SVFAess-... $DITiesstt.. SNPM:mor... SNOCimor. SCBMiless-... SMAX_CCi... SMAX_CCIL

PD:100 PF: 1. %
PD:53 P57,

Figure 2.4: Lattice Miner User Interface

All other columns are set to zero. This setting of ones and zeros is handled in the bottom
portion of the file.

When the .Imb file is loaded in, the user interface will look like Figure 2.4. Within
this user interface, you can edit any existing information by simple commands such as
double clicking in order to toggle a boolean option, or type in a text option.

When Lattice Miner is run to generate the concept lattice, it brings up another
user interface, the Lattice View, which can be seen in Figure 2.5. Within this interface,
you can edit the appearance of the lattice with a wide variety of options. You can modify
what information is present in the labels, how the colors of the chart reflect the density of a
particular lattice point, change the zoom size, and many other standard options. You can
export an image of the current lattice view (which you can manipulate in the lattice view
window) as a .bmp, .jpg, or .png image file[17].

Within the concept lattice view of Lattice Miner, you can also generate an . XML
output file[17] (such as the one in figure 2.6 which can be parsed to create user friendly
displays of information. The XML file generated by Lattice Miner can be parsed relatively
simply. When we parse the file, we can create user friendly outputs (like those seen in
Figure 4.9).

Each point on the Concept Lattice is treated like a node in a linked lattice struc-
ture. All parents of a particular node contain some subset of the that same node. All

children of a node contain at least all rule elements of that original node, and additionally
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)] Lattice : velocity (1)
File Edit Options Tools

D[R RARAR[IR B | [eeise ] : =]

Lattice : velocity (1)

-
e e

- & {SCAMlese-than-, $DIT:lss- (R s meeten] \ ‘
@ {$DMiess-than-, SL0Cmore

Figure 2.5: Lattice Miner: Concept Lattice View

one or more rule elements not in the parent. Each node’s ”score” is calculated by simply
averaging the score elements of each rule that matches the nodes conditions.

If the user specifies what Node they are ”starting from” , which can be defined by
the rules that particular node represents, we can explain related nodes, and how traversing
from one node to another can affect their expected averages for target classes.

These outputs will illustrate the the user the average class values of the rules
that meet the nodes condition. It will also compare those averages to neighbouring nodes,
allowing a user to understand how they can move through the lattice structure.

We simply parse the existing XML file looking for relationships between nodes.
For example, if a user selected a given node, the printout would display the relationship with
the parent and child nodes, illustrating which objectives the parent and children improve
upon and which objectives they degrade on. In our output, we simply average all the rules
in a single node together to generate the node’s objective scores.

The parsing algorithm simply matches the rule identification number to the rule
name in order to access the scores. Then by accessing the ID numbers of rules in parent

and child nodes, we can easily create this printout by averaging together the values in each
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= templat xml |

1 <?xml wversion="1.0" encoding="UTF-8"2>

2 <LAT Desc="wvelocity (1) - temp.s1lf - #0fNodes = 17" type="Conceptlattice">
3 <MINSUPP>0.0</MINSUPP>

4 —| <CBJS>

=] <CBJ id="0">PD:100 PF:100 PREC:71</0BJ>
[ <0OBJ id="1">PD:11 PF:1 PREC:94</CBJ>
7 <COBJ id="2">PD:12 PF:4 PREC:88</CBJ>
8 <COBJ id="3">PD:18 PF:5 PREC:88</CBJ>
9 <COBJ id="4">PD:19 PF:6 PREC:87</CBJ>
10 <COBJ id="5">PD:28 PF:9 PREC:8B8</CBJ>
11 <CBJ id="6">PD:33 PF:10 PREC:88</CBJ>
iz <C0BJ id="T7">PD:51 PF:13 PREC:91</CEJ>
13 <CBJ id="8">PD:53 PF:33 PREC:79</CBJ>
14 <COBJ id="9">PD:56 PF:35 PREC:79</CBJ>
15 <CBJ id="10">PD:59 PF:57 PREC:71</0BJ>
16 <CBJ id="11">PD:7 PF:0 PREC:100</CBJ>
i7 <COBJ id="12">PD:73 PF:62 PREC:74</0BJ>
18 <COBJ id="13">PD:92 PF:69 PREC:76</0BJ>
19 r </CBJS>

20 [H <RTTS>

21 <ATT id="0">$AVG CC:more-than-</ATT>
22 <ATT id="1">§CAM:less-than-</ATT>

23 <ATT id="2">§CBM:less-than-</ATT>

24 <ATT id="3">§CBO:more-than-</ATT>

25 <LTT id="4">5CE:more—-than-</LTT>

26 <ATT id="5">§DIT:less-than-</ATT>

27 <ATT id="6">§LOC:more-than-</ATT>

28 <BTT id="T">§MAY CC:less-than-</ATT>
29 <ATT id="8">§MAY CC:more-than-</ATT>
30 <RTT id="9">§MFA:less-than—</RTT>

Figure 2.6: XML output generate from previous Concept Lattice View

Hax-Coteesthant 0 SLOG oe-thar-58 n
4

SCBOIMONe-han-T.0 §CE mare-th
1
$DITless-than-20 SMACCCmarethan 0
6 SNOC morethan-0.0) 3
3

§0BMless-than-0.0 /
) . i

SMFAless-than-0.385061 73]
1

?A‘/G,CC more-than-1.0 FCAM:less-than-0.43333334
_w

Figure 2.7: An example of a generated Concept Lattice output image.

www.manharaa.com




CHAPTER 2. RELATED WORK 29

node.

This printout parsed from the XML is a very simple version of explaining the
Pareto frontier. While in the future, more complex methods may be developed which
produce better information yield, HOW with Formal Concept Analysis shows getting this

type of information at present is possible and not costly, and thus satisfies the goals of this

thesis.
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At Node 9

Conditions
$DIT:less-than-median
$LOC:more-than-median
Averages

PD: 57

PF: 54

PREC: 77

Parents

Node 1

$DIT:less-than-median

PD: 53 (-)

PF: 44 (-)

PREC: 79 (+)

Children

Node 13

$DIT:less-than-median

$LOC:more-than-median

$MAX_CC:more-than-median
PD: 59 (+)

PF: 57 (+)

PREC: 71 (=)

Figure 2.8: Neighborhood printout
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Chapter 3

How

3.1 Introduction

HOW is an adaptation of WHICH [19]. WHICH is a stochastic associative rule
learning algorithm designed to optimize a single objective function. Which combines rules
together in order to form new rules. Which would run several rounds of stochastic gener-
ation, until it had gone through a set number of generations without improvement. Upon
completion, the top rules would becomes the theories generated. The method of scoring
the rule was based on context. In the case of detecting defects, measures like number of
bugs per lines of code would determine the score. In class prediction databases, measure
like PD, precision, or f-measure could serve as the dependent class.

HOW was developed using Common LISP. It was primarily developed in Ubuntu
11.04 (Natty Narwhal) using SLIME within emacs. Some of the code was written by Dr.
Tim Menzies (the portions of code written by him are noted in the Appendix), though I
wrote the vast majority.

HOW defers from Which primarily because HOW can serve to optimize more than
one dimension. The algorithm for HOW is not limited to any specific number of dependent
variables. The primary difference between HOW and WHICH is in the scoring function,
as the mechanisms for stochastically combining associative rules are basically unaffected.

Because WHICH only scores one attribute[19], it cannot find an optimal Pareto frontier in
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multi-dimensional space. HOW’s objective function is highly customizable, and allows for
any number of objectives.

HOW takes in a database with either a single discrete target class or one or multiple
numeric target classes. HOW then generates a list of rules, returning those rules that form
a Pareto frontier in the target space. In the case of a single discrete target class, HOW can

optimize accuracy, f~-measure, and other measures of a rule’s effectiveness.

3.2 Data Input

HOW, which was developed in LISP, uses LISP-designed structures and macros
to load in the table. A sample of the ”Weather” dataset can be seen in Figure 3.2. This
data type can be adapted from .arff files easily, as the structure of the data is relatively
unchange. Formatting only has to be done to column names, and the records and column
headings have to be wrapped in LISP procedure calls. The first line, as in .arff files, will
define the table. The call to deftable will create a table with the name given as the first
argument (in Figure 3.2, the name is weather). The ”!” macro at the beginning of each
record calls a LISP procedure that loads the record into a global table variable

The column name can be given meaningful symbols so the user can control how
their data will be parsed. For example, if one column is named ”$humidity”, then this
column is treated as a numeric class, meaning it will be discretized using Equal-Width
discretization. The user can control the level of discretization in the function call of HOW.
There are limitations on using these symbols. A dataset can only have one discrete target
class feature (though there can be any number of classes within this feature) or can have at
least one numeric target class. A dataset cannot mix a discrete class with any number of
numeric classes without heavy specialization. A specialization has been written for defect
prediction, which treats the number of defects as both a numeric and a discrete value

(discretized number of defects being zero or number of defects being non-zero).
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( deftable weather
forecast $temperature

$humidity windy !class)

! sunny 85 85 FALSE no)

! sunny 80 90 TRUE no)

! overcast 83 86 FALSE yes)
! rainy 70 96 FALSE yes)

! rainy 68 80 FALSE yes)

! rainy 65 70 TRUE no)

! overcast 64 65 TRUE yes)
sunny 72 95 FALSE no)

! sunny 69 70 FALSE yes)

! rainy 75 80 FALSE yes)

! sunny 75 70 TRUE yes)

! overcast 72 90 TRUE yes)
I overcast 81 75 FALSE yes)
! rainy 71 91 TRUE no)

e N s N T N T T N e NI e N T NN

Figure 3.1: The Weather dataset using How’s LISP data input

Symbol meanings

Symbol | Meaning
! Discrete target class

$ Numeric attribute
$! Numeric target class (maximize)
$# Numeric target class (minimize)

Table 3.1: Symbols in the column names and their meanings
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3.3 Rules

The Rule data structure is the most important part of HOW. A Rule is a data
representation of an associative rule, connecting certain occurrences in the features of the
data with the target classes. For example, a rule for a discrete target class may look like
figure 3.2. This rule data structure is the backbone of HOW’s learning algorithm.

CLASS: BREAKFAST

Given that:
MEAT is in (SAUSAGE BACON)
SIDE in in (EGGS)

SCORE: z

UTILS: PD, (1-PF), PREC

Figure 3.2: A sample rule

The rule in Figure 3.2 means that if either Sausage or Bacon are the attribute for
Meat, and Eggs is the attribute for side, then the projected classification for that record is
Breakfast. The score would denote how optimal the rule was, based on its utilities (utils)
are used. In this case, the utilities are made up of the sum of recall (PD), inverse false
alarm (PF), and precision (PREC). It is worth noting that datasets with numeric targets

do not have a CLASS element, since the goal is optimization, not classification.

3.4 Score vs. Utilities

The score of the rule is used to weight the stochastic selection of rules, causing
rules with higher scores to be selected for combination more than rules with lower scores.
This is done because, logically, combining poor scoring rules is unlikely to produce a high
scoring rule. Thus, score is only a heuristic tool used for weighting selection, where utilities
actually specifically define where in multi-dimensional space a rule is located.

The utilities serve as the dependent variables of the rule. In the case of rules to
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determine discrete classes, where the goal is correct classification, utilities like recall, false
alarm, precision, accuracy, et al., prove to be the most useful. Using n such measures allows
you to find rules along the Pareto frontier in n-dimensional space that optimize those n
utilities. In numeric datasets, you can use the average or median dependent variables in
the training data that the rule covers. This allows you to similarly find the Pareto frontier
of a numeric space.

Each of these items represents a different form of multi-objective optimization.
Score is a form of aggregate fitness function, which combines the numeric metrics of the
objectives into one metric. Utilities, however, uses Pareto dominance for multi-objective
optimization. The actual ”success” of HOW is measured by the results of the output rules’
utilities, since we are trying to find the Pareto frontier of our objective functions with HOW.

In short, when defining the Pareto frontier, a rule’s utilities are used. When

stochastically selecting which rules to combine, the score hueristic is used.

3.5 Combining

Rules are combined stochastically (with their weighting of selection being based
on score) two at a time. This is implemented by creating a list of rules, duplicating each
rule several times (or exploding the list), and then selecting two items at random from the
exploded list. The number of duplications for a given rule is proportional to the rule’s score
element.

When two rules are combined, like fields are merged. For example, say we have
two rules like in Figure 3.5. The result of combining these two rules into one is in Figure
3.5.

This illustrates several important points about rule combination. First, you can
only combine rules with the same class in classification problems (in problems with numeric
target classes, the ”class” element of a rule is irrelevant). Also, when you combine rules with

a common attribute, but different elements, that portion of the rule becomes more general
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RULE 1 =

CLASS: BREAKFAST
Given that:

MEAT is in (BACON)

RULE 2 =

CLASS: BREAKFAST
Given that:

MEAT is in (SAUSAGE)
SIDE is in (EGGS)

Figure 3.3: Two rules to be combined

CLASS: Breakfast

Given that:
MEAT is in (BACON SAUSAGE)
SIDE is in (EGGS)

Figure 3.4: The combined rule
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(that is, in the example provided, now the meat can be either BACON or SAUSAGE, so
more elements in MEAT will meet the criteria of this rule). A rule only gets more specific

when the parent rules have different attributes.

3.6 Algorithm

3.6.1 Discretization

Even when evaluating numeric target classes, it is still vital in HOW to discretize
the data of non-target attributes. For this process, we use Equal-Width discretization. This
method involves breaking the data up into ordered ”bins” which are equal in range.

The number of bins chosen in discretization affected the output. Generally, for
defect prediction, 2-bin discretization worked very well. However, for numeric problems,
4-bin, 8-bin, and 16-bin would frequently perform better than 2-bin on several problems,

such as Schaffer.

3.6.2 Rounds

A distinction needs to be made between two different processes in HOW: round0
and rounds. Round0O generates all atomic rules, which is an associative rule that contains
only one condition (if Field X is Attribute Y). RoundO generates the initial list of rules
which become the basis on which all combined rules are created. Rounds is responsible for
combining these rules.

The Rounds algorithm is the looping process in which rules are stochastically
created. This process loops, creating several rules per round, until a specific number of
rounds passes without improvement. The rules given as input to rounds are generated
within round zero.

Several constants have been set for these experiments. For example, five is con-
sidered the minimum number of rows that need to apply to a rule for that rule to be valid.

Also, in each round, twenty rules are generated. Lives refers to the amount of tolerated
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”failed” rounds, or rounds without finding a new ”best rule”, before rounds terminates.

Rounds
begin
comment: "rules” is the existing list of rules
lives := b5;
while (lives > 0)
newrule;
frontier := getParetoFrontier(rules);
for i := 0 to 20 step 1 do
rulel := random-element(explode(rules))
rule2 := random-element(explode(rules))
newrule := combine(rulel, rule2)
score(newrule);
if (newrule not in rules) A
then
(newrule— > support > 5)
push(newrule, rules)
fi
end
if frontier! = getParetofrontier(rules)
then
frontier := getParetoFrontier(rules);
lives :==5
else
lives = lives — 1

fi

end
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return rules;

end

3.6.3 Scoring

Rules can be scored based on a number of objectives. In classification data, is it
common to score rules as attributes like recall, accuracy, false alarm rate, et al. This is
done by simply finding these measurements on all the records of data the rule applies to.

Numeric target-class problems are scored in a similar fashion. The averages are
taken of all numeric target-classes for all records in the dataset that meet the conditions
of the rule being scored. These target averages become the dimensions of the rule in the
utility space. The score is frequently the weighted sum of the utility measures.

Fach numeric target class can either be optimized or minimized, depending on
user preference. For example, when we examine defect prediction data, our goal is to find
as many faults as possible while minimizing the number of line of code that need to be
examined. In this case, we would seek to maximize the number of defects, and minimize
the lines of code that our rules find.

FEach average is then represented as a utility, weighted from 0 to 1, where 1 is
optimal (if we are maximizing, 1 is the maximum; if we are minimizing, 1 is the minimum).
Usually, the sum of these utilities serves as the rule’s score, which is used as a heueristic to

determine how often that rule is used to combine with other rules.

3.7 Output

HOW outputs a list of rules. If you are working with a numeric database, the
rules outline the Pareto frontier of your target class utilities. For example, in the problem
Schaffer 4.1, optimum is considered where f1(x) and f2(x) are smallest. In discreet datasets
(like Weather and Diabetes), the dependent variables can be PD, Precision, F-Measure, etc.

are used to form the Pareto frontier. Regardless which type of database is used, the rules
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that are returned are all along the Pareto frontier, and thus no rule in the final output is

Pareto dominant over another rule in the output.

3.8 Handling Mathematical Models

Standard mathematical models exist where you try to find the sets of input vari-
ables Z that optimize multiple functions f(Z). This presents a challenge to HOW, as HOW
requires discretized input. When the data is discretized it becomes impossible to find precise
answers. Therefore, an iterative generations model is used to handle mathematical models

such as Schaffer and Tanaka.

3.8.1 Algorithm

First, a dataset is generated based of the model being tested. If the data is
constrained in any way, such as in Tanaka[25], the constraints are checked at data generation,
and that data is not added to the data set. HOW is then run on this data set, and the
output rules that form the Pareto frontier are then used as constraints to generate another
data set.

This is effectively a breadth first search, where the rules are used as nodes in the
tree. At each point, we run HOW, use the output rules to constrain data, and then run
HOW again. After all the rules are recursed on, all the generated rules are evaluated for
Pareto dominance, and then each rule along the frontier is evaluated similarly to form the
next generation.

Using this breadth-first search style method does lead to a very large set of solu-
tions. In order to maintain a reasonable run time, and to limit the data, crowd-pruning
is used. A linear method of pruning is used, where the rules are selected such that their
target vectors are some angle apart. This pruning method is called at the conclusion of
each generation.

Summarily, the algorithm can be conveyed this way
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1. Generate an initial dataset based on the given problem set

2. Discretize the data and run HOW on the discretized dataset.

3. For each output rule from the previous generation, generate a new dataset,
discretize, and then run HOW

4. Combine all the current generation and previous generation output rules into
one group, and find the Pareto dominant set. This uses an elitism principle similar to what
is seen in NSGA-II[1].

5. Prune the set using the described method.

6. Return to Step 3.

This algorithm works because on each subsequent run of the data, the range of
input variables becomes tighter, and therefore the discretized data has more tightly bound
ranges. This allows HOW to analyze much more precise areas than a run across a full data

set.

3.8.2 Crowd Pruning

Crowd Pruning is needed to prevent the size of the solution space from increasing
exponentially from one generation to the next. Without any crowd pruning, runs of HOW’s
mathematical model algorithm would take unreasonably long, and would require very large
amounts of memory.

In practice, crowd pruning has a minimal effect on the ”quality” of the Pareto
frontier discovered. This is because most of the rules generated in later generations are only
very slightly different from existing rules, due to a very minor change in the input variable
changes. Summarily, the benefits of crowd pruning (reasonable run times, smaller memory
cost) far exceed any cost, which at most is a minimal to negligible loss in performance.

Crowd pruning for mathematical models is found by using the FastMapl[3] algo-
rithm. FastMap can be effectively be used to reduce the dimensionality of a problem.

1. Given an array of points S, arbitrarily select y such that y € S.

2. Find the point a € S maximizes the distance d(a,y).
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3. Find the point b € S maximizes the distance d(b, a).

4. Using a and b as the pivots.

The distance measure d(z,y) measures the cosine similarity between z and y in
order to find the angle. The actual distance is measured as the absolute value of the angle
between z and y.

For crowd pruning, we select the point a, and sort all the data. For each point ¢
€, we find the angle between the line from a to the point of origin, and the line from i to
the point of origin. This measure of the angle from a to ¢ is used to sort the data so that
each point is ordered based on distance from a.

Once we have this sorted list of points, we remove from the set S all point that
are within some angle 6 of a. We then select the closest point p to a that is not within the
angle # and then, remove all points within 6 of p. This process repeats until the end of the

data. The algorithm is illustrated below.

begin

Prune S

comment: ”S” is the sorted list of points, sorted by angle from a.

a = S[0];

theta := .5comment: ”in degrees”

for i := 0; to length(S) step 1 do

if abs(angle(a,i)) > theta then
remove(, S);
else a :=4; fi
end

returns’;

end
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Chapter 4

Experiments with HOW

4.1 Different Test Models

Because our approaches to the mathematical test cases and to the defect data were
very different, and our output is processed in different ways, we have broken the results up
into two sections and will analyse them separately.

The Mathematical Models section will illustrate that the HOW algorithm can
function adequately as a general multi-objective optimization tool. The Defect Data section
will illustrate the ”neighbourhood finding” mechanic developed to handle HOW’s output.

Fach test model had different utilities and a different scoring heuristic fitness
function, which are outlined at the beginning of the section. Unless otherwise stated,

assume Equal-Width discretization was used.
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4.2 Mathematical Models

For handling mathematical modes, the utilities were set to the output of the ob-

jectives function such that:

Mazx(Fy) — avg(f1)

Ut = 3 () = Min(Fy)
L (F) —avg(f2)
Utdl = Max(Fy) — Min(F»)
Utiln _ Max(Fn) - avg(fn)

Max(F,) — Min(F),)

Where Max(F;) and Min(F;) are defined as the maximum and minimum of the
objective function f;(Z) observed in the data. The notation avg(f;) is defined as the average
of the objective function f;(¥) across all records that match the rule.

It is worth noting that in the above formulas Util; is small where avg(f1) is large.
This is because all observed mathematical models seek to minimize the objective functions.
If a function fop(Z) existed that was to be maximized, the Util measure would look like

this:

avg(fopt) — Min(Fopt
Max(FOpt) — Min(FOpt

Utilop =

These Util functions are used to weight the averages found for the objective func-
tion results from 1 to 0, where 1 is optimal (which in the mathematical models, means
closest to the minimum). This is to balance out the utility functions in problems such as
Constr-Ex, where the range of one objective function is very different than the range of the
other[1].

HOW can function as a standard multi-objective optimizer. However, due the
level of precision required to perform this task, and due to HOW’s limitation of requiring
discretized data as an input, HOW had to be wrapped inside a larger breadth-first search-
style algorithm outlined in section 3.8. All results shown are after nine generations of the

wrapped HOW.
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Unconstrained Multi-Objective Functions
Name ‘ n ‘ Objectives Variable Bounds
2
Schaffer | 1 253 _ U(Ux _9y2 —10° <=z <= 10°
T S Ok
Fonseca | 3 fil@) =1-c n o, . 1.2 —d<=x; <=4
fo(@) =1 — izt (Fit75)
Kursawe | 3 h(7) = ?;11(106}@(_0'2 zi+ x‘%rl)) <=1, <=5
f2(#) = Sy (|| ® + 5 sin z)

Table 4.1: Unconstrained standard mathematical test problems. Note: all objectives
minimized

This means that for these mathematical models, where precision of answer is very
important to have results close to the Pareto frontier, we saw a dramatic increase in run-
time and memory requirements over the stand-alone HOW. While absolute run-times for
the wrapped HOW were generally reasonable (several seconds to several minutes), this is
relatively much larger than the run-times for existing algorithms.

The mathematical models presented will all illustrated the points found by HOW’s
mathematical models handling. The charts will also show a line where the ”ideal” Pareto
front is. The presented Pareto frontier was found using the jMetal[2] solution space reposi-
tory!. These solution spaces represnt the findings of several different algorithms including
NSGA-II[1], AbYSS[22], SPEA2[32], and more[2].

The Mathematical Models can be divided into two categories. The first is un-
constrained problems. A table of unconstrained problems used in this study can be seen
in figure 4.1. These problems give two or more objective functions, and define the input
vector, both in how many input variables there are, and what numeric range each variable
exists in.

Constrained problems have all the features of unconstrained problems. However,
they additionally have several constraints (represented as ¢;(Z) on the input variables. So

while some combination of points may better optimize the objective functions, they may

"http://jmetal.sourceforge.net /problems.html
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violate one or more of the constraints, and therefore can not be considered part of the
solution space.

Figures 4.1 and 4.2 show the Fonseca and Schaffer problem respectively. These
charts show off the better solutions acheived. Different levels of data discretization proved
more or less effective. In the case of Fonseca, using 4-bin discretization proved the most
effective. In Schaffer, 16-bin discretization.

HOW/’s solutions on the Schaffer[23] problem in Figure 4.1 have a nice, even spread
that reaches across the entire frontier[2]. It matches very closely with the ideal line. How-
ever, on low-levels of discretization (low meaning 2, 4, and 8) HOW failed to come close to
the Pareto frontier. This was because early rules would often eliminate the space x > 0,

when the Pareto dominant range is 0 <=z <=2 [1]

F20X)

F1(X)

Figure 4.1: Schaffer

On Fonsecal[5] in Figure 4.2, HOW also has a good spread and convergence on the
frontier[2], but HOW fails to find the boundary along the bottom right. Still, this is a very
good result, especially the spread.

On some problems, HOW just simply does not succeed in finding the frontier[2].
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Figure 4.2: Fonseca

A noteworthy example is Kursawe[16], as seen in figure 4.3. Worse yet, at some levels of
discretization, ”impossible” answers were generated. Impossible, in this case, meaning a
solution that is actual dominant over the Pareto frontier This is possible because HOW’s
rules operate on averages, so even though the averages of a rule may not be possible, the
data the rule reflects isn’t incorrect.

Constrained problems presented a unique problem for HOW. HOW does not, by
itself, handle constraints in any fashion. Constraint handling is managed at the time of data
generation. In the same way as unconstrained data, each record is created by randomizing
the input variables. However, if the randomized input produces an output violating one or
more constraints, the record is simply not added to the data set.

The first constrained problems we will look at is Srinivas[24]. The results of HOW
on Srivinas can be seen in Figure 4.4. The frontier[2] on Srivinas is relatively linear, with
curves at each end. HOW does very well in converging on the frontier, and the solution is
acceptable.

HOW’s performance on Constr-Ex[1] is very mixed. While the solutions HOW

ol Lalu Zyl_ﬂbl
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F1(X)

Figure 4.3: Kursawe

finds are generally very close to the ideal Pareto frontier[2], meaning a good convergence,
the spread of the solution space is somewhat poor. Still, HOW has good convergence on
both sides of the "bend” in this problem, so again our answer is acceptable.

Tanaka is very unique as a problem. The objective functions are actually equal to
the input variables[25]. The constraints form a curving Pareto frontier which is disconnected
and non-convex[25, 2|, similar to Kursawe[l]. How performs fairly well on the curve with
excellent convergence. The spread is good, but not excellent. Still, given the general
?difficulty” associated with this problem, this is a very good solution.

From these results, we can see that HOW is very capable of finding the frontier
of a mathematical problem set. HOW had reasonable solutions on five of the six selected
datasets. While it may not have performed as well as NSGA-II[1] on the given datasets,
HOW?’s solutions still show it to be a very capable multi-objective optimizer.

It is important to draw the distinction that HOW isn’t just an optimizer. HOW
also explains the frontier. Each of the points along the frontier is a child in a large tree of

generated rules. An origin back to an initial rule in the first generation of HOW can be
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Constrained Multi-Objective Functions
Name | Objectives | Constraints | Variable Bounds
a(T) = —2f — a5+ 1+
o 0.1cos(16arctan(3t)) <=
Tanaka ? Eg B il 0 ’ T <=x; <=1
2 2 gz((l_," = ((IZ1—0.5)2+(262—
0.5)2 <=.5
fl(f) = gl(a_ﬁ) =x9+9x1 >=06 0l<=z1<=1.0
trE = i
Constrix fo(@) = (1 4+ x2) /21 92(%) = =29+ 921 >=1 0<=x9 <=5
[(@) = (21 -2 +
2 —
.. - + 2 gl(x)=x2+9$1 >=6
Srinivas (x2_, ) _, —20<=2<=20
f2(Z) = 921 — (22 — 92(Z) = —x9 + 921 >=1
1)2

Table 4.2: Constrained standard mathematical test problems. Note: all objectives
minimized.

traced, allowing a user to understand how a solution was derived over time. This explanation
is the key separation of HOW from other optimizers. NSGA-II features no such explanation

ability.

4.3 Defect Data

For the tests in this section, equal-frequency 2-bin discretization was used. The

Pareto dominance utilites were set to

Utily = frac(defects found)(total defects)]

Utily =1 — lines of code read

total lines of code

The scoring heuristic fitness function was set to:

F = Utily + Utils

Much like it’s precursor Which [19], HOW was primarily tested using defect pre-
diction data. Because HOW is able to optimize multiple dimensions, HOW can be used in

several ways here. HOW can be used to optimize various statistical measures for predicting
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Figure 4.4: Srinivas

where defects occur such as recall, false alarm, and precision. Figure 2.7 shows the concept
lattice generated from such an optimization on the Velocity dataset?

HOW can also be used to optimize fields within the defect prediction data. For
example, in figure 4.7, you can see the space of rules generated for the Xerces dataset® that
optimize the percentage of defects found while minimizing the percentage of lines of code
(LOC) read. Figure 4.7 illustrates the rules found as points. The diagonal line would be the
result of finding a percentage of bugs equal to the percentage of lines of code read, which
would be a ”worst-case” scenario.

The space of rules generated for Xerces shows a typical curve found across most

?Data available at http://promisedata.org/?p=333
3Xerces dataset available at http://promisedata.org/?p=345
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Figure 4.5: Constr-Ex
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Figure 4.6: Tanaka

ol

datasets. Several rules are found that locate a large percentage of the bugs in a relatively

small portion of the code. For example, one rule finds roughly half the bugs looking at less

than 20% of the lines of code. As the rules increase in generality, the increase in bugs found
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Figure 4.7: Xerces
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Figure 4.8: Velocity

becomes much slower than the increase in lines of code found. Eventually, in most cases,
the rules with the highest percentage bugs found have to read a larger percentage of lines

of code (illustrated by the point underneath the worst-case line at roungly 80% of lines of
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code read). Figure 4.8 for the Velocity data set shows a very similar performance.

Based on the rules in the Velocity dataset, we can create the lattice structure in
figure 2.7 using Lattice Miner[17]. This concept lattice is relatively simple compared to the
lattice generated from most datasets. This lattice was generated from HOW optimizing
recall, precision, and false alarm rate on classifying records as having defects. Recall and
Precision are optimal when maximized, and false alarm is optimal when minimized.

The key to HOW’s ability to explain the neighborhood is in the ability to parse
the generated concept lattice to produce an output, which is illustrated in figure 4.9. This
particular figure shows the immediate neighborhood (that is, parent and child nodes) of
node 9 (which is the dark, further right node on the third row of figure 2.7). This figure
does illustrate the common pattern in rules generated on the defect data that as recall
increase, false alarm increases and precision decreases.

The defect data allows several optimization options. In figure 4.9, an output
optimization of recall (PD), false alarm (PF), and precision (PREC) is shown. Each of
these measures is calculate by first labelling all records with defects as ”bugs” and records
without as "none”. These numbers refect how successful a rule is in classifying records as
”bugs”. Note that in order to simplify the rules to make them easier to understand, the rules
generated from velocity for this demonstration were generated using 2-bin Equal-Frequency
discretization, not equal width.

This user output can be produced from the perspective of any node, and shows
the "cost” (represented by the expected change in performance) of moving from one point
in the neighbourhood to another. This can be helpful for showing the difference between a
general solution, where performance among the neighbours is relatively consistent, and from
less stable solutions, where the neighbours’ objective scores vary greatly. This is especially
useful when we understand that HOW performs as well on defect data as Which, which
does not offer the same neighbourhood explanation and cannot directly optimize multiple

dimensions[19] as HOW can.
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4.4 Fitness Heuristic

As explained before, while the results of HOW uses Pareto dominance, the scoring
hueristic for weighting the stochastic selection uses an aggregate fitness function. For all
tests in the Mathematical models section, the hueristic was simply the sum of the utilities,
where a larger sum was ”"better” than a smaller sum. For the examples shown in Defect
Prediction data, the fitness function was the sum of the percentage of bugs found and the
percentage lines of code not read. In both cases, the fitness function was simply a sum of
the utilities used.

However, in the original experiments with Which, it was found that having heavier
penalties on high PFs (false alarm rate) improved the quality of the data [19]. Therefore, I
wanted to compare two heuristic functions within HOW and their effect on runs of several

defect prediction datasets. The first heuristic function was

Sum = PD+ (1 — PF)+ (1 - %LOC)

The second formula was adapted from Which’s B; function, however effort was

replaced by percentage lines of code, since the two were more or less the same measure [19].

VPDZxa+ (1= PEVZ#B+ (1= %LOC)2*~
Va+ B4y

Bi=1-
where

a=1; §=1000; v=10

Too compare these two hueristics, we ran HOW using each hueristic over multiple
datasets, calculating the AUC(%LOC, PD) (The area under the curve where the x-axis is
the lines of code, and the y-axis is the PD). AUC(%LOC, PD was calculated using the
Trapezoid rule, given a set of points S(z,y) where |S| = n x represents %LOC and y

represents PD, the area can be calculated with the following summation:
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n—1

AUC(%LOC, PD) =" —(yi + Yit1) * (Tig1 — ;)
i=1

N)}—‘

One could argue that the trapezoid rule, which will underestimate the concave
curve expected from the (%LOC, PD) graph, will unfairly favor a more dense frontier, since
there is less loss from underestimated space. In reponse to this, I would note that density
of the frontier is relevant, so it is actually advantageous to punish more sparsely populated
frontiers. A problem could arise if the curve were convex, rather than concave, since then
more sparsely populated frontiers would actually over-estimate the area of the frontier, but
this simply is not the case here.

When using the Trapezoid Rule, we first sort the data using PD as the sorting
attribute such that the rule with the smallest PD appears first in the list. Since we are
working with two dimensions, and since we’ve limited our rule output to the Pareto frontier,
we can make the assumption that the second dimension, LOC, is also sorted similarly. We
can also make the assumption in all cases that the point (0,0) is in the rule solution space.
This is the point where a rule has found 0% of the defects after reading 0% of the lines of
code. A null rule would meet this condition, so it is always included. Additionally, the last
point on a curve (z,,y,) is considerd a worst case for extrapolation where z,, is the %LOC
and ¥, is the PD. Because HOW limits the output to those along the Pareto frontier, no
output rule with utilities (2, ym)could ever exist such that y,, < y, and z,, > x,, since
in this case the point (z,, ym) would be Pareto dominated by point (z,,y,). Thus, we can
extrapolate the point (x,,y,) to at worst (100%, y,,)

Table 4.4 illustrates our findings for AUC(%LOC, PD) across multiple defect pre-
diction datasets[7]. Ideally, a large area under the curve is desirable, as it would show you
are finding more defects in fewer lines of code read. Therefore, in this table, larger numbers
are "better.”

From Table 4.4, we can see that across most datasets the area under the curve of

By nnd Sum are very similar. In all but three of the datasets, they are within 3% of each
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Sum vs. By

Dataset Sum By | Sum — B; | % difference
ant 0.5587 | 0.5380 0.0207 -3.711%
camel | 0.5095 | 0.5607 -0.0.512 10.05%
jedit 0.6963 | 0.6869 0.0094 -1.35%
log4;j 0.542 | 0.5411 0.0009 -0.17%
lucene | 0.5993 | 0.6348 -0.0355 5.92%
pbeans | 0.8431 | 0.8511 -0.008 0.95%
poi 0.5659 | 0.6627 -0.0968 17.11%
synapse | 0.5589 0.56 -0.0011 0.20%
velocity | 0.7259 | 0.7264 -0.0005 0.07%
xalan | 0.5904 | 0.6013 -0.0109 1.85%
xerces | 0.7395 | 0.7558 -0.0163 2.20%

Table 4.3: Comparison of the Sum and B hueristics

other. However, on the datasets where there is seperation (camel, lucene, and poi), By. It is
then reasonable to see that it is generally worth using B;. The scoring heuristic, while not
directly affecting the Pareto frontier utilities, has an indirect effect on how the search space
finds the frontier. Further research into improving the heuristic would be useful beyond
just these two solutions. A better heuristic may help address some of the issues HOW has
with various mathematical model sets.

I have included two charts illustrating the results on a dataset where By beats Sum
substantially, poi (Figure 4.10), and one where the two finish relatively equally, velocity
(Figure 4.11). In poi, you can visibly see there is an area of solutions using the sum just
simply doesn’t find. This results in Sum performing dramatically worse than Bj. In velocity,
both hueristics perform nearly identically. Both models find roughly rules that find 50%
of the defects within the 15% of the LOC, the shallow out before having a steep jump at
around 50% of lines of code read to nearly 100% of defects found.There are some points B
find that dominate points Sum finds, but vice versa is also true. In the end, our area under

the curve measure is very similar for both metrics.
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At Node 9

Conditions
$DIT:less-than-median

$L0OC:more-than-median

Averages
PD: 57
PF: 54
PREC: 77

Parents

Node 1
$DIT:less-than-median
PD: 53 (-)

PF: 44 (-)

PREC: 79 (+)

Children
Node 13

$DIT:less-than-median

$L0OC:more-than-median

$MAX_CC:more-than-median
PD: 59 (+)

PF: 57 (+)

PREC: 71 (-)

Figure 4.9: Neighborhood printout
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100

80 |

60 |

%LOC

40 |

20

0 20 40 60 80

PD

100

o8

Figure 4.10: The Pareto frontier of the poi solution space found using B; and Sum as

heuristics

100

80 r

60 r

%LOC

40 |

20

0 20 40 60 80

PD

100

Figure 4.11: The Pareto frontier of the velocity solution space found using B; and Sum as
heuristics
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Chapter 5

Conclusion

This chapter is broken into three parts. Section 5.1 will give an overview of the
findings of this thesis. Section 5.2 will summarize the findings. Section 5.3 will provide

future work to be done on the HOW algorithm.

5.1 Overview

According to Harman, ”in order to develop the mature roots that allow the eld
[of search-based software engineering] to grow, the second phase of exploration requires a
deeper understanding of problem and solution characteristics.”[12]. HOW is a stochastic
associative rule learning algorithm developed from Which [19, 21] that can meet the needs
of the second phase mentioned by Harman. HOW is highly customizable for use in multi-
dimensional optimization, and can work or be made to work on several different types of
multi-objective optimization problems. H

OW uses primarily Pareto dominance optimization, though an aggregate fitness
function is used as a heueristic for searching. As we have shown, HOW not only finds a
solution, but also keeps the perspective as to how each solution is derived, and where it fits
in the neighbourhood of solutions. HOW hopes to fill this need by trying to explain the
search and solution space to the user. By giving the user more information on the Pareto

frontier, we hope to empower the user with better decision-making ability when analyzing
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software engineering problems.

HOW improves on the Which algorithm in several ways. Where Which can only
directly optimize one objective function (the objective function itself could be a combinate
of several objectives, as seen in [19], but is ultimately a single-optimization problem), HOW
can directly optimize multiple dimensions and find a space of Pareto optimal solutions.
More importantly, HOW provides knowledge of a search space with explanation, without
a decrease in performance from Which. With HOW, we have shown that explanation of a

search-space is possible, and that it can come without a loss in performance.

5.2 Findings

HOW can quickly learn on defect data and numeric data. On the mathematical
test problems, HOW was able to converge on the frontier in five of six cases. This pattern
of succes with one failure is similar to Which’s initial study, where Which performed in the
top ranking all but one time, where it finished near the bottom. These failures clearly can
be present, but seem to be unlikely in most cases, as they are observed rarely.

On Defect Prediction, HOW was able to produce useful results that were on par
with results of Which’s fitness aggregate function. However, unlike Which, HOW was able
to produce a neighborhood finding output that explained the Pareto frontier. The ability

to explain the Pareto frontier is the key finding from this thesis.

5.3 Future work

Two enhancements should be able to be made in order to decrease the run time
of HOW. Currently, HOW uses list structures to access the data. By changing from list
structures to indexed vector structures, access time for particular elements in the table will
decrease from linear to constant time operations. Additionally, if a hash table were created
for the attributes and used to access the rows, scoring a rule would no longer require iterating

through the entire table.
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Efforts can be spent finding different formal concept analysis software outside of
Lattice Miner. Lattice Miner is advantageous because it is open-sourced[17]. However, it is
possible other FCA software! might be more suited for HOW than Lattice Miner.

Reworking HOW to solve the Next Release Problem would be a very interesting
a useful experiment. The next-release problem as defined by [30] presents a complex but
solvable multi-objective optimization problem. HOW may require a fair amount of modi-
fication in the scoring algorithm, but the basic structure of stochastically combining rules

into more rules would seem very apt for finding solutions to the Next Release Problem.

! An excellent collection of FCA tools can be found at http://www.fcahome.org.uk/fcasoftware.html
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Appendix A

Source Code

Because there are differences in HOW'’s implementation for the purposes of Defect
Prediction or for Handling Mathematical Models, we have seperate sections for Defect Code
and ”Frontier Finder”, which was the name giving to the wrapping of Which for hanling
mathematical models. Any code in the section Other can be assumed to be identical for
both forms of How. The Data section gives samples of the input data formats for various

functions.

A.1 Defect Code

A.1.1 3willlisp

;8will.lisp was used for discretizing the data
;

;

(defun discretizer (column numbins table)
(let ((out *()))
(reverse
(dotimes (x numbins out)
(if (= x (— numbins 1))
(push (float (+ (num—max column) 1.0)) out)
(push (float (4 (num—min column)
(x (+ x 1)
(/ (= (num—max column) (num—min column)) numbins))))

out))))))

(defun percentile (column x table)
(let ((pos (position column (table—cols table) :test #’equalp)) (lst ’()))
(dolist (row (table—rows table))
(push (nth pos (row-—cells row)) lst))
(setf 1st (sort (copy-—list lst) #'<))
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(nth (round (* x (length lst))) lIst)))

(deftest !discrl (&aux (column (make—num :max 280 :min 10)) (numbins 3))
(test (discretizer column numbins) (100 190 280)))

(defun discretizetbl (tbl &optional (numbins 2))
(minmax tbl)
(let ((newtbl (make—table :name (table—name tbl) :klasses(list (make—klass :name ’BUGS)
(make—klass :name 'NONE)))))
(dolist (row (table—rows tbl))

(let ((newrow (make—row :o0ld (row-—cells (copy—row row)))))

(cond
((>= (nth 20 (row-—cells row)) 1)
(progn

(setf (row-—class newrow) ’BUGS)
(dolist (k (table—klasses newtbl))
(if (equal 'BUGS (klass—name k))
(incf (klass—n k))))))
(t
(progn
(setf (row-—class newrow) ’'NONE)
(dolist (k (table—klasses newtbl))
(if (equal ’NONE (klass—name k))
(incf (klass—mn k)))))))
(setf (row—loc newrow) (nth 10 (row—cells row))
(row—bugs newrow) (nth 20 (row-—cells row))
(row—cells newrow) (row—old newrow))
(push newrow (table—rows newtbl))))
(dolist (col (table—cols tbl))
(if (typep col ’num)
(let ((pos (position col (table—cols tbl))) (dlist (discretizer col numbins tbl)))
(dolist (r (table—rows newtbl))
(setf (nth pos (row-—cells r)) (num—to—descr (nth pos (row—cells r)) dlist)))
(setf (table—cols newtbl) (append (table—cols newtbl) (list (make—sym :name (col—name
col) :goalp (col—goalp col))))))
(let ((pos (position col (table—cols tbl))))
(dolist (r (table—rows newtbl))
(if (numberp (nth pos (row—cells r)))
(setf (nth pos (row—cells r)) (intern (write—to—string (nth pos (row—cells r))))
)))
(setf (table—cols newtbl) (append (table—cols newtbl) (list col))))))
(dolist (col (table—cols newtbl) newtbl)
(let ((pos (position col (table—cols newtbl))))
(dolist (row (table—rows newtbl))
(unless (member (nth pos (row—cells row)) (col—vals col))
(push (nth pos (row—cells row)) (col—vals col)))))
(sort (copy—list (col—vals col)) #’string—lessp))))

#|(defun discretizetbln (tbl &optional (numbins 10))

(minmaz tbl)
(let ((newtbl (make—table :name (table—name tbl) :klasses (table—klasses tbl))))
(dolist (thisrow (table—rows tbl))
(let ((thisrow2 (copy—row thisrow)))
(push thisrow?2 (table—rows mnewtbl))))
(dolist (this (table—cols tbl))
(if (col—goalp this)
(setf (table—cols newtbl) (append (table—cols newtbl) (list this)))
(if (typep this ’‘num)
(let ((pos (position this (table—cols tbl))) (dlist (discretizer this numbins)))
(dolist (r (table—rows mnewtbl))
(setf (nth pos (row—cells r)) (num—to—descr (nth pos (row—cells r)) dlist)))
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(setf (table—cols newtbl) (append (table—cols newtbl) (list (make—sym :name (
col—name this) :goalp (col—goalp this))))))
(let ((pos (position this (table—cols tbl))))
(dolist (r (table—rows mnewtbl))
(if (numberp (mth pos (row—cells 1)))
(setf (nth pos (row—cells r)) (intern (write—to—string (nth pos (row—cells r

)))))))
(setf (table—cols newtbl) (append (table—cols newtbl) (list this)))))))
newtbl))

|#

#| (defun discretizetbl (tbl &optional (numbins 10))
(minmaz tbl)
(let ((newtbl (make—table :name (table—name tbl) :klasses (table—klasses tbl))))
(dolist (thisrow (table—rows tbl))
(let ((thisrow?2 (copy—row thisrow)))
(push thisrow?2 (table—rows newtbl))))
(dolist (this (table—cols tbl))
(if (typep this ’num)
(let ((pos (position this (table—cols tbl))) (dlist (discretizer this numbins)))
(dolist (r (table—rows newtbl))
(setf (nth pos (row—cells r)) (num—to—descr (nth pos (row—cells r)) dlist)))
(setf (table—cols mewtbl) (append (table—cols newtbl) (list (make—sym :mame (col—name
this) :goalp (col—goalp this))))))
(let ((pos (position this (table—cols tbl))))
(dolist (r (table—rows newtbl))
(if (numberp (nth pos (row—cells r)))
(setf (nth pos (row—cells r)) (intern (write—to—string (nth pos (row—cells r))))

)))
(setf (table—cols mewtbl) (append (table—cols newtbl) (list this))))))

newtbl) )|#

(defun minmax (tbl)
(dolist (this (table—cols tbl))
(if (typep this ’num)
(let ((pos (position this (table—cols tbl))))
(dolist (thisrow (table—rows tbl))
(if (> (nth pos (row-—cells thisrow)) (num—max this))
(progn
(setf (num—max this) (nth pos (row-—cells thisrow)))))
(if (< (nth pos (row-—cells thisrow)) (num—min this))
(progn
(setf (num—min this) (nth pos (row-—cells thisrow))))))))))

#| (defun num—to—descr (z dlist &optional (n 0)) ;dlist is output from discretzer function
(let ((nthn (nth n dlist)))
(if (K= = nthn)

(cond
((= n (— (length dlist) 1)) (intern (concatenate ’string “more—than—" (write—to—string (
nth (— n 1) dlist)))))
((> n 0) (intern (concatenate ’'string ”less—than—" (write—to—string nthn) ”"—
and—more—than—" (write—to—string (nth (— n 1) dlist)))))

(t (intern (concatenate ’string 7less—than—" (write—to—string nthn)))))
(num—to—descr =z dlist (+ n 1)))))
| #

(defun num-—to—descr (x dlist &optional (n 0)) ;dlist is output from discretzer function
(let ((nthn (nth n dlist)))
(if (<= x nthn)

(cond
((= n (— (length dlist) 1)) (intern (concatenate ’string ”more—than—" )))
((> n 0) (intern (concatenate ’string ”less—than—” (write—to—string nthn) ”—
and—more—than—" (write—to—string (nth (— n 1) dlist)))))

www.manharaa.com




APPENDIX A. SOURCE CODE 65

(t (intern (concatenate ’string ”less—than—"))))
(num—to—descr x dlist (+ n 1)))))

(deftest !tester3willl ()
(data ”../data/discrete—lisp/weather.lisp”)

(test (table—cols (thetable)) (table—cols (discretizetbl (thetable)))))

(deftest !tester3will2 ()

(data ”../data/numeric—lisp/weather.lisp”)
(test (discretizetbl (thetable))
?#S (TABLE

....................................... less—than—77.4—and—more—than—74.3
__FALSE_YES)
e — - . CLASS_YES

—_ ——~less—than—70.3—and—more—than—68.2
....................................... less—than—71.2—and—more—than—68.1
....................................... FALSE_YES)
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: CELLS.. (OVERCAST

....................................... less—than—85.0—and—more—than—82.
....................................... less—than—86.7—and—more—than—83.

_______________________________________ FALSE_YES)
: CLASS_YES

_______________________________________ TRUE_NO)

_______________________________________ TRUE_NO)

66
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(deftest !tester3willd ()
(reset—seed)
(data ”../data/numeric—lisp/weather.lisp”)
(test (which2 (discretizetbl (thetable) 3) t 3) nil))

(deftest !testingposition3will (&aux (coll (make—sym
(col2 (make—sym :name
(col3 (make—sym :name
(test (position coll (list coll col2 col3)) 0))
(deftest !3bl ()
(data ”../data/proj3/iris.lisp”)

(discretizetbl (thetable)))

(deftest !disctabletest2 ()
(data ”../data/numeric—lisp/weather.lisp”)
(discretizetbl (thetable) 3)
(print (thetable)))

(deftest !3al ()
(data ”../data/proj3/iris.
(discretizetbl

lisp”)

(print (fss (thetable) 3))))

A.1.2 Dboot.lisp

Some portions written by Dr. Menzies

config
start slime
(load

Loads

(M—z slime <RET>)
7boot.lisp”)
all other files

(let (files)
(defun make
(labels

(&optional
((make0 (x)
(format t ”"“a_.” x) (load x)))
)

verbosep &rest new )

(format t

(if new
(setf files

(if verbosep

new) )

:name ’apple))

>banana))

cat)))

www.manharaa.com



APPENDIX A. SOURCE CODE 68

(mapcar #’'make0 files)
(handler—bind ; SBCL-—specific
((style—warning #’'muffle—warning))
(mapcar #’ make0 files)))
(terpri)

t))

(make nil
”?../1lib/deftest.lisp”
../ lib/macros.lisp”
”../1lib/lib.lisp”
”../1lib /hash.lisp”
”../1lib/bestof.lisp”
”../1lib /random. lisp”
”../1lib/profile.lisp”
»1ib1l.lisp”
”bestof.lisp”
”structs.lisp”
”data.lisp”
“how. lisp”
”defstructs.lisp”
”angle.lisp”
”3will.lisp”

)

A.1.3 defstruct.lisp

;All operations that edit, modify, or create the rules defstruct are here.
;

]

(defstruct rule
class ; ”Yes/No”
ands; list of ors
(score 0)
avgs
utils
(marked nil)
support
(pd 0)

(pf 0)

(prec 0)
(bugs 0)
(loc 0))

#| (defmethod print—object ((r rule) stream)
(unless (equal (rule—class r) ’blandqzzy)
(format t 7 Class: “A™%” (rule—class 1)))
(format t 7 Given that: %)
(dolist (this (rule—ands 1))
(format t ”"T T A is in "A "%” (ors—for this) (ors—walues this)))
(format t ”Score: "F°%” (rule—score 1))
(format t 7Support: "D %” (rule—support r))
(if (null (rule—avgs 1))
(progn
(format t 7"Pd: "D%” (x 100 (first (rule—wutils r))))
(format t ”Pf: "D~%” (x 100 (— 1 (second (rule—utils r)))))
(format t ”Prec: "D%” ( % 100 (third (rule—utils r)))))
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(format t 7Averages: “A % %" (rule—avgs r)))
r)|#

(defstruct ors
for ; weather

values) ; sunny/cloudy

(defstruct centroid
center
rows

classcount)

(defun square (x)

(* x x))

(defun combine (rlist) ;combine two rules
(let ((r1 (first rlist)) (r2 (second rlist)))
(let ((r3 (make—rule :class (rule—class rl) :score 0)))
(dolist (rlands (rule—ands rl))
(push (copy—ors rlands) (rule—ands 1r3)));deep copy to avoid errors
(dolist (r2ands (rule—ands r2))
(let ((no—match t))
(dolist (r3ands (rule—ands r3))
(progn
(if (eq (ors—for r2ands) (ors—for r3ands))
(progn
(setf (ors—values r3ands) (sort (copy—list (remove—duplicates (concatenate ’
list (ors—values r2ands) (ors—values r3ands)) :test #’equalp)) #’
string—lessp)
no—match nil)))))
(if no—match
(push r2ands (rule—ands r3)))))
(setf (rule—ands r3) (sort (copy—list (rule—ands r3)) #’string—lessp :key #’ors—for))
r3)))

(defun rule—check (rule table)
(dolist (ors (rule—ands rule))
(dolist (col (table—cols table))
(if (equal (ors—for ors) (col—name col))
(if (equal (ors—values ors) (col—vals col))
(setf (ors—for ors) ’killme)))))

(setf (rule—ands rule) (remove—kills (rule—ands rule)))
rule)

(defun remove—kills (lst)
(if (null lst)
"0
(if (equal (ors—for (first lst)) ’killme)
(remove—kills (rest Ist))
(cons (first lst) (remove—kills (rest lst))))))

(defun to—rule (klass lst) ;take something from which in round0 and alters it to match rules
structure
(make—rule :class klass :ands (list (make—ors
:for (second lst)
:values (list (intern (string (third 1st))))))

:score (first Ist)));;change to score function later)

(defun twos (lst)
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(let ((rl (nth (randi (length lst)) lst))
(r2 (nth (randi (length lIst)) lst)))
(if (eq rl r2);change equals function
(twos0 Ist rl 19 361 rl)
(let ((diff (diff—angle (rule—utils rl1) (rule—utils r2))))
(if (> 9999999 diff)

(list rl r2)
(twos0 1st rl 19 diff r2))))))

(defun twos0 (lst rl x min—diff min—r)
(let ((r2 (nth (randi (length lst)) 1Ist)))
(if (<= x 0)
(list rl r2)
(if (eq rl r2)
(twos0 Ist rl (— x 1) min—diff min—r)
(let ((diff (diff—angle (rule—wutils rl1) (rule—utils r2))))
(if (> 15 diff)
(list rl r2)
(if (< diff min—diff)
(twos0 lst rl (— x 1) diff r2)
(twos0 Ist rl (— x 1) min—diff r2))))))))

(defun explode (lst)
(let ((out *()))
(dolist (this lst)
(dotimes (i (first this))
(push (second this) out)))
out))

(defun normalize (lst) ;lst or rules, returns ((num rule),(num rule)...)
(let ((out ’())(sum 0)) ;testing if this new style works

(dolist (this lst)

(if (< sum (rule—score this))

(setf sum (rule—score this))))

(dolist (this lst)

(push (list (floor (% 100 (/ (rule—score this) sum))) this) out))
out))

(defun prune (lstin)
(let ((outl ’()) (max 0)(cntr 0))
(dolist (this lstin)
(unless (= 0 (rule—support this))
(push this outl)))

(setf outl (sort (copy—list outl) #’> :key #’rule—score))
(reverse outl)))

(defun score (r tbl s)
(let ((colnums ’()) (countr 0) (rowlistin (therows tbl))(a 0)(b 0)(c 0)(d 0)(loc 0)(bugs 0)(

locyes 0)(bugsyes 0))

(dolist (this (thecols tbl))
(push (list (col—name this) countr) colnums)
(incf countr))

(dolist (this rowlistin)
(incf loc (row—loc this))
(incf bugs (row—bugs this))
(if (rule—match this r tbl)

(progn
(incf bugsyes (row—bugs this))

(incf locyes (row—loc this))

(if (equal (rule—class r) (row—class this))
(incf d)

www.manharaa.com




APPENDIX A. SOURCE CODE 71

(incf ¢)))
(if (equal (rule—class r) (row—class this))
(incf b)
(incf a))))

(setf (rule—support r) (support a b c d))

(setf (rule—utils r) (list (pd a b ¢ d) (= 1 (pf a b c d))(— 1 (/ locyes loc)))
(rule—pd r) (ceiling (* 100 (pd a b c d)))
(rule—pf r) (floor (x 100 (— 1 (pf a b c d))))
(rule—prec r) (ceiling (* 100 (prec a b ¢ d)))
(rule—bugs r) (ceiling (x* 100 (/ bugsyes bugs)))
(rule—loc r) (floor (* 100 (/ locyes loc))))

;(setf (rule—utils r) (rule—avgs 1))
s (sum (rule—utils r))))
(= 1 (/ (sqrt (+ (square (pd a b ¢ d)) (x 1000 (square (— 1 (pf a b ¢ d)))))) (sqrt 1001)))))

(defun scoren (r tbl)
(let ((colnums ’()) (countr 0) (rowlistin (therows tbl)) (rowlistout ’()) (goals ’()))
(dolist (this (thecols tbl))
(push (list (col—name this) countr) colnums)
(if (col—goalp this)
(push countr goals))
(incf countr))
(dolist (this rowlistin)
(if (rule—match this r tbl)
(push this rowlistout)))
(let ((goalsums ’()) (goalavgs ’()))
(dotimes (x (length goals))
(push 0 goalsums))
(dolist (thisrow rowlistout)
(let ((counterl 0))
(dolist (g goals)
(progn
(incf (nth counterl goalsums) (nth g (row-—cells thisrow)))
(incf counterl)))))
(dolist (this goalsums)
(if (= this 0)
(push 0 goalavgs)
(push (float (/ this (length rowlistout))) goalavgs)))
(setf (rule—support r) (length rowlistout))
(setf (rule—avgs r) goalavgs)
(setf goals (reverse goals))
(let ((weighted—avgs ’()))
(dolist (i goals)
(if (eq #\! (col—goalp (nth i (table—cols tbl))))
(if (= 0 (nth (position i goals) goalavgs))
(push 0 weighted—avgs)
(push (/ (— (nth (position i goals) goalavgs) (num—min (nth i (table—cols tbl)))
)
(— (num—max (nth i (table—cols tbl))) (num—min (nth i (table—cols tbl))
))) weighted—avgs))
(if (= 0 (nth (position i goals) goalavgs))
(push 0 weighted—avgs)
(push (/ (— (num—max (nth i (table—cols tbl))) (nth (position i goals) goalavgs)
)
(— (num—max (nth i (table—cols tbl))) (num—min (nth i (table—cols tbl))
))) weighted—avgs))))
(setf (rule—utils r) weighted—avgs)
(magnitude weighted—avgs)))))

(defun pd (a b ¢ d)
(/ (float d) (float (+ d b .0000000001))))
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(defun pf (a b c¢ d)
(/ (float c¢) (float (+ a c .0000000001))))

(defun prec (a b c d)
(/ (float d) (float (+ ¢ d .0000000001))))

(defun support (a b c d)
(/ (float (+ c d)) (float (+ a b c d))))

(defun accuracy (a b ¢ d)
(/ (float (+ a d)) (float (+ a b c d))))

(defun sum (1)
(if (null 1)
0
(+ (first 1) (sum (rest 1)))))

(defun entropy (tbl Ist)
(let ((sum 0) (1 (length 1st)))
(dolist (class (table—klasses tbl) sum)
(let ((n 0))
(dolist (row Ist)
(if (eql (row—class row) (klass—name class))
(incf n)))
(unless (= n 0)

(incf sum (x (/ n 1) (= 0 (log (/ n 1))))))))))

(defun getcolnum (col colnums)
(unless (null colnums)
(if (eq col (first (first colnums)))
(second (first colnums))

(getcolnum col (rest colnums)))))

(defun final—prune (lst)
(dolist (this (copy—list Ist))
(unless (rule—marked this)
(dolist (that (copy-—list lst))
(unless (or (equalp this that) (rule—marked that))
(if (pareto—dominate (rule—utils that) (rule—utils this))
(progn
(setf (rule—marked this) t)))))))
(remove—marks lst))

(defun pareto—dominate (lstl lst2)
(if (null 1stl)
t
(if (< (first lstl) (first Ist2))
nil

(pareto—dominate (rest Istl) (rest lst2)))))

(defun remove—marks (lst)
(if (null lst)
"0
(if (rule—marked (first lst))
(remove—marks (rest Ist))

(cons (first lst) (remove—marks (rest lIst))))))

A.1.4 how.lisp

Some portions written by Dr. Menzies

; This implements the How loop (in the code still referred to as which2,
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;since which2 was the original mame for this extension)
;

;

(defparameter xeverys* ’allqzjx)

(defun which2 (&optional (tbl (thetable)) (s 2))
(train tbl)
(learn tbl s)

)

(defun which2n (&optional (tbl (thetable)))
(learnn tbl))

(defun train (tbl)
(dolist (row (therows tbl))

(how—manys (thecols tbl) ; get the column headers
(row—cells row) ; get the cells
(row—class row) ; get the class of this row
)))

(defun how—manys (cols cells class)
(labels ((worker (col cell)
(how—many class
(col—name col)
cell
(sym—counts col))))

(mapcar #’worker cols cells))) ; run down cols and cells in parallel

(defun how—many (class what cell hash)
(when (knownp cell) ; skip any cell labelled 72”7
(inch ‘(,class ,what ,cell) hash)
(inch ‘(,*everyx ,what ,cell) hash)))

(defun inch (key hash)
”increment._a_hash_bucket_.from_zero”
(incf (gethash key hash 0)))

(defun !how—manysl ()
(reset—seed)
(data ”../data/discrete—lisp/weather.lisp”)
(train (thetable))
(with—output—to—string (s)
(dolist (col (thecols))

(showh (sym-—counts col) :stream s))))

(deftest !how—manys ()
(test (!how—manysl)

? (ALLQZJX _FORECAST_OVERCAST) .=_4
________ (ALLQZJX_FORECAST_RAINY) _=_5
________ (ALLQZJX _FORECAST_SUNNY) _=._5
________ (NO_FORECAST_RAINY) _=_2
~ (NO_FORECAST_SUNNY) .=.3
________ (YES_FORECAST_OVERCAST) _=_4
________ (YES_FORECAST_RAINY) _=._3
________ (YES_FORECAST_SUNNY) _=._2
-~ (ALLQZJX _TEMP.COOL) _.=_4
________ (ALLQZJX _TEMP_HOT) .=_4
________ (ALLQZJX _TEMP_MILD) .=_6
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________ (NO_TEMP_COOL) .=._1
________ (NO_TEMP_HOT) _=_2
________ (NO_TEMP_MILD) _=_2
________ (YES_TEMP_COOL) .-
~ (YES_TEMP_HOT) .=
________ (YES_TEMP_MILD) _=_4

________ (ALLQZJX _HUMIDTY _HIGH) _=_7
________ (ALLQZJX _HUMIDTY .NORMAL) _=_7
_ (NO_HUMIDTY _HIGH) .=_.4
________ (NO_HUMIDTY.NORMAL) .=.1
________ (YES_HUMIDTY _HIGH) .=_3
________ (YES_HUMIDTY NORMAL) _=_6

_ (ALLQZJX _WINDY_FALSE) _=_8
________ (ALLQZJX _WINDY_TRUE) _=_6
________ (NO_WINDY_FALSE) .=.2
________ (NO_WINDY_TRUE) .=.3

________ (YES_WINDY_FALSE) _=_6
________ (YES_WINDY_TRUE) _=_3
________ (ALLQZJX_!PLAY.NO) .=_5

_ (ALLQZJX_!PLAY_YES) .=._9
________ (NO_!PLAY_NO) .=_5

________ (YES_!PLAY_YES).=_9"))

3

(defun learn (tbl s)
(let ((out *()))
(dolist (target (theklasses tbl) out)
(push (learnl target tbl s) out))))

(defun learnn (tbl)
(roundsn (roundOn tbl) tbl))

(defun learnl (target tbl s)
(let ((which (round0O target tbl)))
(rounds target which tbl s)))

(defun round0O (target tbl)
(let ((out *()))
(dolist (col (thecols tbl))
(unless (col—goalp col)
(dokeys (key (sym—counts col))
(push (list 0 (second key) (third key)) out))))

(remove—duplicates out :test #’equal)))

(defun init—lattices (tbl)
(let ((out *()) (init *()))

(dolist (col (thecols tbl))

(unless (col—goalp col)

(dokeys (key (sym—counts col))
(push (list (second key) (third key)) init))))

(dolist (this init)

(push (make—latvertex :conditionals (list (make—conditional :for (first this)

:ors (list (second this))))) out))

(remove—duplicates out :test #’equalp)))

(defun roundOn (tbl)
(let ((out *()))
(dolist (row (therows tbl))
(let ((countr 0))
(dolist (this (row—cells row))
(unless (col—goalp (nth countr (table—cols tbl)))
(push (list 0 (col-name (nth countr (table—cols tbl))) this) out))
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(incf countr))))

(remove—duplicates out :test #’equal)))

(defun rule—match (row rule table)
(let ((colnums ’()) (countr 0) (out t))
(dolist (this (table—cols table))
(push (list (col—name this) countr) colnums)
(incf countr))
(dolist (thisors (rule—ands rule) out)
(unless (member (nth (getcolnum (ors—for thisors) colnums) (row—cells row)) (ors—values
thisors))
(setf out nil)))))

;(defun round0 (target tbl)

;o (let (out
; (n (length (therows tbl))))
; (labels

; ((worker (hash want m what class value &Hauz s)

; (if (eql class want)

; (if (setf s (b°2/b+r hash want m n what value))
; (push (list (round s 0.01)

; what value)

; out)))))

; (dolist (col (thecols tbl)) ; for every column

; (unless (col—goalp col) ; that’s mot the goal

; (dokeys (key (sym—counts col))

; (print key) ; for everything counted in that col
; (worker (sym—counts col) ; get the hash table counds

; (klass—name target) ; what class are we targetting?
; (klass—n target) ; how many of them do we have?
; (col—name col) ; what is the col name?

H (first key) ; what class is being counted?
; (third key) ; what value we looking at?

; ))))

; (sort out #> :key #'first))))

(defun b"2/b+r (hash want m n what value)
(let* ((every (gethash ‘(,xeverys* ,what ,value) hash 0))

(b0 (gethash ‘(,want ,what, value) hash 0))
(ro (— every b0))
(b (/ b0 m)) ; Tatio in target
(r (/ r0 (= nm)))) ; ration everwhere else

(if (> b r) ; in more better than rester
(/ (= b b) iobr2/(b+r)

(+ b r (randf 0.0000001))))))

(defun roundsn (which tbl)
(let ((lives 5) (rules ’()) (round 1) (max 0) (zero—score t))
(dolist (this which)
(let ((that (to—rule ’blandgxzy this)))
(setf (rule—score that) (scoren that tbl))
(unless (> 16 (rule—support that))
(push that rules))))
(loop while (> lives 0) do
(let ((this nil) (found nil))
(dotimes (number 50)
(setf this (combine (twos (explode (normalize rules)))))
(setf (rule—score this) (scoren this tbl))
(dolist (that rules)
(if (equalp this that)
(setf found t)))
(unless (or found (> 5 (rule—support this)))
(push this rules))))
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(setf rules (prune rules))
(if (> (rule—score (first rules)) max)
(setf max (rule—score (first rules))
lives 6))
(incf round)
(decf lives))

(final—prune rules)))

(defun rounds (class which tbl s)
(let ((lives 5) (rules ’()) (round 1) (max 0) (zero—score t))
(dolist (this which)
(push (to—rule (klass—name class) this) rules))
(dolist (r rules)
(setf (rule—score r) (score r tbl s))
(if (> (rule—score r) 0)
(setf zero—score nil)))
(if zero—score
rules
(progn
(loop while (> lives 0) do
(let ((this nil) (found nil))
(dotimes (number 20)
(setf this (combine (twos (explode (normalize rules)))))
(setf this (rule—check this tbl))
(setf (rule—score this) (score this tbl s))
(dolist (that rules)
(if (equalp this that)
(setf found t)))
(unless (or found (= 0 (rule—support this)))
(push this rules)))
(setf rules (prune rules))
(if (> (rule—score (first rules)) max)
(setf max (rule—score (first rules))
lives 6))
(incf round)
(decf lives)))
(final—prune rules)))))

(defun !tablel ()

(data ”../data/LispData/xerces/05—xerces—abc.lisp”)
(discretizetbl (thetable) 2))

(defun !lattice ()
(data ”../data/LispData/velocity/03—velocity—ab.lisp”)
(let ((tbl (discretizetbl (thetable) 2)))
(let (rules)
(dolist (this (which2 tbl))
(if (equal (rule—class (first this)) ’BUGS)
(setf rules this)))
(let ((outfile (open ”velocity.lmb” :direction :output :if—exists :supersede)))
(write—line "LM_BINARY_CONTEXT” outfile)
(let ((column—labels ’()) (row—labels ””) (rowline ’()) (rows ’()) (n 1))
(dolist (r rules)
(dolist (this (rule—ands r))
(dolist (that (ors—values this))

(push (intern (concatenate ’string (symbol—name (ors—for this)) ”:” (symbol—name
that))) column—labels)))
(setf row—labels (concatenate ’string row—labels 7 |_PD:” (write—to—string (rule—pd r))
?_PF:” (write—to—string (rule—pf r)) ”_PREC:” (write—to—string (rule—prec r)))
D (+ 0 1))

(setf column—labels (remove—duplicates column—labels))
(dolist (r rules)

www.manharaa.com




APPENDIX A. SOURCE CODE 7

(setf rowline ’())
(dotimes (i (length column-—labels))
(push 0 rowline))
(dolist (this (rule—ands r))
(dolist (that (ors—values this))
(if (position (intern (concatenate ’string (symbol—name (ors—for this)) ”:” (
symbol—name that))) column-—labels)
(setf (nth (position (intern (concatenate ’string (symbol—-name (ors—for this))
”:” (symbol—name that))) column—labels)
rowline) 1))))

(push rowline rows))

(let ((column—line 77))
(dolist (c column-—labels)
(setf column—line (concatenate ’string column—line ”|.” (symbol—name c) 7.7)))

(write—line row—labels outfile)
(write—line column—line outfile))
(dolist (row rows)
(let ((row—string 77))
(dolist (this row)
(setf row—string (concatenate ’string row-—string (write—to—string this) 7.7)))
(write—line row-—string outfile))))
(close outfile)))))

(defun !stability ()
(let ((whichout (which2 (!tablel))))
(let ((rules ’()))
(dolist (r whichout)
(if (equal 'BUGS (rule—class (first r)))
(setf rules r)))

(data ”../data/LispData/velocity /03—velocity—ab.lisp”)
(let ((tbl (discretizetbl (thetable) 2)) (out ’()))

(dolist (r rules)
(unless (equal 'KILLME (ors—for (first (rule—ands r))))
(let ((temp (make—rule :class ’'BUGS :ands (copy-—list (rule—ands r)))))
(score temp tbl 2)

77 sk sk ok sk ok ok ok ok sk ok ok ok ok ok Rk ok ok )

(print
;(print r)
;(print temp)))))))
(print ” Original”)
(print r)
(print ”New”)
(print temp)
)))))))
(defun !learnl ()
(let ((rules (which2 (!tablel) 2)))
(dolist (this rules)
(if (equal (rule—class (first this)) ’BUGS)
(print this)
(print (length this))))))

;(data 7../data/LispData/velocity/03—velocity—ab.lisp”)
; (dolist (that rules)

; (print that)

; (score that (thetable) 0)

; (print that))))

(defun !table2 ()

(data ”../data/LispData/velocity/03—velocity—ab.lisp”)
(discretizetbl (thetable) 2))
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(defun !learn2 ()
(print—output (which2 (!table2) 4)))

(defun !table3d ()
(data ”../data/LispData/pbeans/0l—pbeans—a.lisp”)
(discretizetbl (thetable) 2))

(defun !learn3 ()
(which2 (!table3) 4))

(defun !tabled4 ()
(data ”../data/LispData/xerces/05—xerces—abc.lisp”)
(discretizetbl (thetable) 2))

(defun !learnd ()
(which2 (!tabled4) 4))

(defun !runl ()
(data ”../data/LispData//05—xerces—abc.lisp”)
(let ((table (discretizetbl (thetable) 2)))
(let ((rules (which2 table 4)))
(dolist (r rules)
(let ((vertices (init—lattices table)))

(Pt 7 sk sk ok ok sk ok ok ok sk ok ok ok ok sk ok ok sk ok ok sk ok ok ok ok sk o ok ok K ok ok K sk ok ok ok k)
(PILATIt 7 sk sk ook sk ok sk ok ok sk sk ok ok ok sk sk ok sk sk ok sk ok sk sk ok sk R oK sk ok ok ok oK sk ok ok ok )
(PILATIE 7 sk sk sk sk sk sk sk sk sk s ok sk sk sk sk ok sk sk ok sk ok sk sk ok sk R ok sk ok sk ok sk ok sk ok )
(lattice—builder vertices r))))))

i1)))

(defun table—averages (tbl)
(let ((out ’()) (1 (length (row-—cells (first (table—rows tbl))))))
(dolist (this (table—rows tbl) out)
(push (list (nth (— 1 1) (row—cells this)) (nth (— 1 2) (row—cells this))) out))))

(defun print—output (rlst)
(dolist (rules rlst)
(if (equal (rule—class (first rules)) ’BUGS)
(dolist (rule rules)
(print (concatenate ’string (write—to—string (rule—pd rule))
7.7 (write—to—string (rule—loc rule))))))))
#ldefun first—util (r1 r2)
(if (= (ceiling (first (rule—wutils r1))) (cetling * I1(second (rule—utils 12))))
(> (third (rule—wutils r1)) (third (rule—utils r2)))
(< (first (rule—wutils r1)) (first (rule—utils r2)))))

(defun second—wutil (r1 r2)
(> (third (rule—wutils r1)) (third (rule—utils r2))))
;(deftest !learn ()|#
; (test (!llearni)
H 75 NO
: (56 HUMIDTY HIGH)
; (44 FORECAST SUNNY)
; (89 WINDY TRUE)
: (26 TEMP HOT)
H (22 FORECAST RAINY)
;i YES
; (51 HUMIDTY NORMAL)
; (44 FORECAST OVERCAST)
; (42 WINDY FALSE)
; (28 TEMP MILD)
; (21 TEMP COOL)”))
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A.2 FrontierFinder

A.2.1 3willlisp

;Handles discretization
;

;

(defun discretizer (column numbins)
(let ((out ’()))
(push (float (— (num—min column) .00001)) out)
(dotimes (x numbins out)
(if (= x (— numbins 1))
(push (float (4 (num—max column) .00001)) out)
(push (float (+ (num—min column)
(x (+ x 1)
(/ (= (num—max column) (num—min column)) numbins))))

out)))

(reverse out)))

(deftest !discrl (&aux (column (make—num :max 280 :min 10)) (numbins 3))
(test (discretizer column numbins) (100 190 280)))

(defun discretizetbln (tbl &optional (numbins 10))
(minmax tbl)
(let ((newtbl (make—table :name (table—name tbl) :klasses (table—klasses tbl))))
(dolist (thisrow (table—rows tbl))
(let ((thisrow2 (copy—row thisrow)))
(push thisrow2 (table—rows newtbl))))
(dolist (this (table—cols tbl))
(if (col—goalp this)
(setf (table—cols newtbl) (append (table—cols newtbl) (list this)))
(if (typep this ’num)

(let ((pos (position this (table—cols tbl))) (dlist (discretizer this numbins)))

(dolist (r (table—rows newtbl))
(setf (nth pos (row-—cells r)) (num—to—descr (nth pos (row—cells r)) dlist)))
(setf (table—cols newtbl) (append (table—cols newtbl) (list (make—sym :name (

col—name this) :goalp (col—goalp this))))))
(let ((pos (position this (table—cols tbl))))
(dolist (r (table—rows newtbl))
(if (numberp (nth pos (row—cells r)))
(setf (nth pos (row-—cells r)) (intern (write—to—string (mnth pos (row—cells r
)))))))

(setf (table—cols newtbl) (append (table—cols newtbl) (list this)))))))
newtbl))

(defun discretizetbl (tbl &optional (numbins 10))
(minmax tbl)
(let ((newtbl (make—table :name (table—name tbl) :klasses (table—klasses tbl))))
(dolist (thisrow (table—rows tbl))
(let ((thisrow2 (copy—row thisrow)))
(push thisrow2 (table—rows newtbl))))
(dolist (this (table—cols tbl))
(if (typep this ’num)
(let ((pos (position this (table—cols tbl))) (dlist (discretizer this numbins)))
(dolist (r (table—rows newtbl))
(setf (nth pos (row-—cells r)) (num—to—descr (nth pos (row—cells r)) dlist)))
(setf (table—cols newtbl) (append (table—cols newtbl) (list (make—sym :name (col—name
this) :goalp (col—goalp this))))))
(let ((pos (position this (table—cols tbl))))
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(dolist (r (table—rows newtbl))
(if (numberp (nth pos (row—cells r)))
(setf (nth pos (row-—cells r)) (intern (write—to—string (nth pos (row—cells r))))
)))
(setf (table—cols newtbl) (append (table—cols newtbl) (list this))))))
newtbl))

(defun minmax (tbl)
(dolist (this (table—cols tbl))
(if (typep this ’num)
(let ((pos (position this (table—cols tbl))))
(dolist (thisrow (table—rows tbl))
(if (> (nth pos (row-—cells thisrow)) (num—max this))
(progn
(setf (num—max this) (nth pos (row-—cells thisrow)))))
(if (< (nth pos (row-—cells thisrow)) (num—min this))
(progn
(setf (num—min this) (nth pos (row-—cells thisrow))))))))))

(defun num—to—descr (x dlist &optional (n 1)) ;dlist is output from discretzer function
(let ((nthn (nth n dlist)))
(if (<= x nthn)
(intern (concatenate ’string (write—to—string nthn) 7 ,” (write—to—string (nth (— n 1)
dlist))))
(num—to—descr x dlist (+ n 1)))))

(deftest !tester3willl ()
(data ”../data/discrete—lisp/weather.lisp”)
(test (table—cols (thetable)) (table—cols (discretizetbl (thetable)))))

(deftest !tester3will2 ()

(data ”../data/numeric—lisp/weather.lisp”)
(test (discretizetbl (thetable))
?#S (TABLE

_______________________________________ less—than—76.6—and—more—than—74.5
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: CELLS. (OVERCAST
less—than—85.0—and—more—than—82.9
less—than—86.7—and—more—than—83.6
FALSE_YES)

:CLASS_YES

_______________________________________ TRUE_NO)
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(deftest !tester3willd ()
(reset—seed)
(data ”../data/numeric—lisp/weather.lisp”)
(test (which2 (discretizetbl (thetable) 3) t 3) nil))

(deftest !testingposition3will (&aux (coll (make—sym :name ’apple))
(col2 (make—sym :name ’banana))
(col3 (make—sym :name ’cat)))
(test (position coll (list coll col2 col3)) 0))

(deftest !3bl ()

(data ”../data/proj3/iris.lisp”)
(discretizetbl (thetable)))

(deftest !disctabletest2 ()

82
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(data ”../data/numeric—lisp/weather.lisp”)
(discretizetbl (thetable) 3)
(print (thetable)))

(deftest !3al ()
(data ”../data/proj3/iris.lisp”)
(print (fss (discretizetbl (thetable) 3))))

A.2.2 boot.lisp

Some portions written by Dr. Menzies

;i config
;i;; start slime (M—z slime <RET>)
;i75 (load 7boot.lisp”)
; Loads all other files in FrontierFinder
(let (files)
(defun make (&optional verbosep &rest new )
(labels ((make0 (x)
(format t ”7“a.” x) (load x)))
(format t ”7&;”)
(if new
(setf files new))
(if verbosep
(mapcar #’'make0 files)
(handler—bind ; SBCL-—specific
((style—warning # muffle—warning))
(mapcar # makeO files)))
(terpri)
)

(make nil
”../1lib/deftest.lisp”
./ 1lib/macros.lisp”
”../1lib/lib.lisp”
»../1lib/hash.lisp”
”../1lib/bestof.lisp”
”../1lib /random. lisp”
”../1lib/profile.lisp”
”1libl.lisp”
"bestof.lisp”
”structs.lisp”
”data.lisp”
"how. lisp”
7defstructs.lisp”
7angle.lisp”
”3will.lisp”
"testtables.lisp”
"ruletree.lisp”

)

A.2.3 defstructs.lisp

; Controls the rule defstruct, including creates, edits, combines,

; scoring, et al
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(defstruct rule
class ; ”Yes/No”
ands; list of ors
score
avgs
utils
(marked nil)
support)

;(defmethod print—object ((r rule) stream)

; (unless (equal (rule—class r) ’blandqzzy)

H (format t 7 Class: "A™%” (rule—class 1)))

; (format t 7Given that: " %”)

; (dolist (this (rule—ands 1))

; (format t 7T T A is in ~A "%” (ors—for this) (ors—wvalues this)))
;i (format t 7Score: "F°%” (rule—score 1))

; (format t 7Support: "D %” (rule—support r))

;o (if (mnull (rule—avgs 1))

; (progn

; (format t 7"Pd: "D%” (x 100 (first (rule—wutils r))))

; (format t 7Pf: "D"%” (* 100 (— 1 (second (rule—wutils r)))))
; (format t ”Prec: "D°%” ( % 100 (third (rule—utils r)))))

H (format t 7Averages: A % %" (rule—avgs r)))

i)

(defstruct ors
for ; weather

values) ; sunny/cloudy

(defstruct centroid
center
rows

classcount)

(defun square (x)

(x x x))

(defun combine (rlist) ;combine two rules
(let ((rl (first rlist)) (r2 (second rlist)))
(let ((r3 (make—rule :class (rule—class rl) :score 0)))
(dolist (rlands (rule—ands rl))
(push (copy—ors rlands) (rule—ands r3)));deep copy to avoid errors
(dolist (r2ands (rule—ands r2))
(let ((no—match t))
(dolist (r3ands (rule—ands r3))
(progn
(if (eq (ors—for r2ands) (ors—for r3ands))
(progn
(setf (ors—values r3ands) (sort (copy—list (remove—duplicates (concatenate ’
list (ors—values r2ands) (ors—values r3ands)) :test #’equalp)) #’
string—lessp)
no—match nil)))))
(if no—match
(push r2ands (rule—ands r3)))))
(setf (rule—ands r3) (sort (copy—list (rule—ands r3)) #’string—lessp :key #’ors—for))

r3)))

(defun to—rule (klass lst) ;take something from which in round0 and alters it to match rules

structure
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(make—rule :class klass :ands (list (make—ors
:for (second lst)

:values (list (intern (string (third 1lst))))))
:score (first Ist)));;change to score function later)

(defun twos (lst)
(let ((rl (nth (randi (length lst)) lIst))
(r2 (nth (randi (length lIst)) lst)))
(if (eq rl r2);change equals function

(twos0 Ist rl 19 361 rl)
(let ((diff (diff—angle (rule—utils

(if (> 9999 diff)

(list rl r2)
(twos0 1st rl 19 diff r2))))))

rl) (rule—utils r2))))

(defun twos0 (lst rl x min—diff min—r)
(let ((r2 (nth (randi (length lst)) Ist)))
(if (<= x 0)
(list rl r2)
(if (eq rl r2)
(twos0 Ist rl (— x 1) min—diff min—r)
(let ((diff (diff—angle (rule—utils
(if (> 15 diff)
(list rl r2)
(if (< diff min—diff)
(twos0 lIst rl (— x 1) diff r2)
(twos0 1st rl (— x 1) min—diff r2))))))))

rl) (rule—utils r2))))

(defun explode (lst)
(let ((out *()))
(dolist (this lst)
(dotimes (i (first this))
(push (second this) out)))
out))

(defun normalize (lst) ;lst or rules, returns ((num rule),(num rule)...)

(let ((out ’())(sum 0)) ;testing if this new style works
(dolist (this lst)
(if (< sum (rule—score this))
(setf sum (rule—score this))))
(dolist (this lst)

(push (list (floor (* 100 (/ (rule—score
out))

this) sum))) this) out))
(defun prune (lstin)
(let ((outl ’()) (max 0)(cntr 0))
(dolist (this lstin)
(unless (= 0 (rule—support this))
(push this outl)))

(setf outl (sort (copy—list outl) #'>

:key #’rule—score))
(reverse outl)))

(defun score (r tbl s)
(let ((colnums ’()) (countr 0) (rowlistin (therows tbl))(a 0)(b 0)(c 0)(d 0)(loc 0)(bugs 0))
(dolist (this (thecols tbl))

(push (list (col—name this) countr) colnums)
(incf countr))

(dolist (this rowlistin)

(if (rule—match this r tbl)
(progn
(incf bugs 0)

www.manharaa.com



APPENDIX A. SOURCE CODE 86

(if (equal (rule—class r) (row—class this))
(incf d)
(inecf c¢)))
(if (equal (rule—class r) (row—class this))
(incf b)
(inct a))))
(setf (rule—support r) (support a b c d))
(setf (rule—avgs r) (list (x 100 (pd a b ¢ d)) (x 100 (= 1 (pf a b c d))) (x 100 (prec a b ¢ d
))))
(print (rule—avgs r))
(setf (rule—utils r) (rule—avgs r))

(sum (rule—avgs r))))

(defun scoren (r tbl)
(let ((colnums ’()) (countr 0) (rowlistin (therows tbl)) (rowlistout ’()) (goals ’()))
(dolist (this (thecols tbl))
(push (list (col—name this) countr) colnums)
(if (col—goalp this)
(push countr goals))
(incf countr))
(dolist (this rowlistin)
(if (rule—match this r tbl)
(push this rowlistout)))
(let ((goalsums ’()) (goalavgs ’()))
(dotimes (x (length goals))
(push 0 goalsums))
(dolist (thisrow rowlistout)
(let ((counterl 0))
(dolist (g goals)
(progn
(incf (nth counterl goalsums) (nth g (row-—cells thisrow)))
(incf counterl)))))
(dolist (this goalsums)
(if (= this 0)
(push 0 goalavgs)
(push (float (/ this (length rowlistout))) goalavgs)))
(setf (rule—support r) (length rowlistout))
(setf (rule—avgs r) goalavgs)
(setf goals (reverse goals))
(let ((weighted—avgs ’()))
(dolist (i goals)
(if (eq #\! (col—goalp (nth i (table—cols tbl))))
(if (= 0 (nth (position i goals) goalavgs))
(push 0 weighted—avgs)
(push (/ (— (nth (position i goals) goalavgs) (num—min (nth i (table—cols tbl)))
)
(— (num—max (nth i (table—cols tbl))) (num—min (nth i (table—cols tbl))
))) weighted—avgs))
(if (= 0 (nth (position i goals) goalavgs))
(push 0 weighted—avgs)
(push (/ (— (num—max (nth i (table—cols tbl))) (nth (position i goals) goalavgs)
)
(— (num—max (nth i (table—cols tbl))) (num—min (nth i (table—cols tbl))
))) weighted—avgs))))
(setf (rule—utils r) weighted—avgs)
(magnitude weighted—avgs)))))

(defun pd (a b ¢ d)
(/ (float d) (float (+ d b .0000000001))))

(defun pf (a b ¢ d)
(/ (float c¢) (float (4+ a ¢ .0000000001))))
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(defun prec (a b c d)
(/ (float d) (float (+ ¢ d .0000000001))))

(defun support (a b ¢ d)
(/ (float (+ c d)) (float (+ a b c d))))

(defun accuracy (a b c d)
(/ (float (+ a d)) (float (+ a b c d))))

(defun sum (1)
(if (null 1)
0
(+ (first 1) (sum (rest 1)))))

(defun entropy (tbl Ist)
(let ((sum 0) (1 (length 1st)))
(dolist (class (table—klasses tbl) sum)
(let ((n 0))
(dolist (row lIst)
(if (eql (row—class row) (klass—name class))
(incf n)))
(unless (= n 0)

(inef sum (x (/ n 1) (= 0 (leg (/ n 1))))))))))

(defun getcolnum (col colnums)
(unless (null colnums)
(if (eq col (first (first colnums)))
(second (first colnums))

(getcolnum col (rest colnums)))))

(defun final—prune (lst)
(dolist (this (copy—list 1st))
(unless (rule—marked this)
(dolist (that (copy—list Ist))
(unless (or (equalp this that) (rule—marked that))
(if (pareto—dominate (rule—utils that) (rule—utils this))
(progn
(setf (rule—marked this) t)))))))

(remove—marks 1st))

(defun final—prune—2 (lst)
(dolist (this (copy—list 1st))
(unless (rule—marked this)
(dolist (that (copy—list Ist))
(unless (or (equalp this that) (rule—marked that))
(if (pareto—dominate—min (rule—avgs that) (rule—avgs this))
(progn
(setf (rule—marked this) t)))))))

(remove—marks 1st))

(defun pareto—dominate (lstl lst2)
(if (null 1stl)
t
(if (< (first 1stl) (first Ist2))
nil
(pareto—dominate (rest Istl) (rest lst2)))))

(defun pareto—dominate—min (lstl Ist2)
(if (null 1stl)
t
(if (> (first 1stl) (first Ist2))

nil
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(pareto—dominate—min (rest Istl) (rest 1st2)))))

(defun remove—marks (lst)
(if (null lst)
0
(if (rule—marked (first lst))
(remove—marks (rest Ist))

(cons (first lst) (remove—marks (rest lst))))))
A.2.4 ruletree.lisp

; The ”"breadth—first” style search for handling math models

]

(defun rule—to—constraint (rule table constraints) ;output = (’(’(0 1) (1 2)) ’'(’(0 .5)))
(dolist (this (rule—ands rule) constraints)
(unless (> (length (ors—values this)) 1)
(let ((in—col (ors—for this)) new—constraints)
(dolist (that (ors—values this))
(let ((new—min (get—min—from—string (symbol—name that)))
(new—max (get—max—from—string (symbol—name that))))
(push (list new—min new—max) new—constraints)))

(setf (nth (get—table—col—num in—col table) constraints) new—constraints)))))

(defun get—max—from—string (str)

(read—from—string (subseq str 1 (search ”,” str))))

(defun get—min—from—string (str)

(read—from—string (subseq str (+ 1 (search ”,” str)))))

(defun any (lst)
(nth (randi (length Ist)) Ist))

(defun get—table—col—num (in—col table)
(let ((out —1) (n 0))
(dolist (col (table—cols table) out)
(if (eq (col—name col) in—col)
(progn
(setf out n)
(return))
(inef n)))
out))

(defun test—rule—to—constraint ()
(fonseca—search (list (list (list —4 4)) (list (list —4 4)) (list (list —4 4))))
(data ”../data/tests/kursawe.lisp”)
(dolist (rule (which2n (discretizetbln (thetable) 2)))
(print (rule—to—constraint rule (thetable) (list (list (list —4 4)) (list (list —4 4)) (list (
list —4 4)))))))

(defun tree—search—test ()
(let ((initial—constraints (list (list (list —4 4)) (list (list —4 4)) (list (list —4 4)))))
(fonseca—search initial—constraints 1000)
(data ”../data/tests/fonseca.lisp”)
(let ((rules (which2n (discretizetbln (thetable) 16))))
(dotimes (n 20)
(let ((newrules rules)
(outfile (open (concatenate ’string ”generation” (write—to—string n) ”.dat”)
direction :output :if—exists :supersede)))
(dolist (rule rules)

(fonseca—search (rule—to—constraint rule (thetable) initial—constraints))
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(data ”../data/tests/fonseca.lisp”)
(setf newrules (append newrules
(which2n (discretizetbln (thetable) 16)))))
(setf rules (final—prune—2 newrules))
(setf rules (crowd—prune—3 rules .9))
(print (length rules))
(print (concatenate ’string 7 sx*xx%xx” (write—to—string n) " sxkxxxx”))
(let (ruleavgs)
(dolist (rule rules)
(push (rule—avgs rule) ruleavgs))
(setf ruleavgs (copy—list (sort (copy—list ruleavgs) #’first—avg)))
(dolist (that ruleavgs)
(write—line (concatenate ’string (write—to—string (first that)) ”.” (write—to—string
(second that))) outfile)))
(close outfile)))))
(print ”done”))

(defun frontier—finder (file func init—constraints d &optional (samples 100) (alpha .9) (nrounds

10))
(funcall func init—constraints samples)
(data (concatenate ’string ”../data/tests/” file ”.lisp”))

(let ((rules (which2n (discretizetbln (thetable) d))))
(dotimes (n nrounds)
(let ((newrules rules)

(outfile (open (concatenate ’string ”output/” file ”7/” (write—to—string d) 7/
generation” (write—to—string n) ”.dat”) :direction :output :if—exists :supersede
if—does—not—exist :create)))

(dolist (rule rules)
(funcall func (rule—to—constraint rule (thetable) init—constraints) samples)
(data (concatenate ’string ”../data/tests/” file ”.lisp”))
(unless (<= (length (table—rows (thetable))) 20)
(setf newrules (append newrules (which2n (discretizetbln (thetable) d))))))
(setf rules (final—prune—2 newrules))
(setf rules (crowd—prune—3 rules alpha))
(let (ruleavgs)
(dolist (rule rules)
(push (rule—avgs rule) ruleavgs))
(setf ruleavgs (copy—list (sort (copy—list ruleavgs) #’first—avg)))
(dolist (that ruleavgs)

(write—string (write—to—string (first that)) outfile)

(dolist (item (rest that))
(write—string (concatenate ’string
(write—line ”” outfile))))

(print (concatenate ’string 7 *x*xxx” (write—to—string n) 7 sx%xxx”))
(close outfile))))
(print ”done”))

»_” (write—to—string item)) outfile)

(defun ff—test ()
(frontier—finder ”fonseca”

#’fonseca—search
(list (list (list —4 4)) (list (list —4 4)) (list (list —4 4)))
8
1000
.6
10))

(defun ff—fonseca ()
(let ((dlst (list 2 4 8 16 32 64)))
(dolist (d dlst)

(frontier—finder ”fonseca”

#’fonseca—search
(list (list (list —4 4)) (list (list —4 4)) (list (list —4 4)))
d
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1000
-5))))

(defun ff—kursawe ()
(let ((dlst (list 2 4 8 16 32 64)))
(dolist (d dlst)
(frontier—finder ”kursawe”

#’kursawe—search
(list (list (list —5 5)) (list (list —5 5)) (list (list —5 5)))
d
1000

-5))))

(defun ff—schaffer ()
(let ((dlst (list 2 4 8 16 32 64)))
(dolist (d dlst)
(frontier—finder ”schaffer”

#’schaffer—search
(list (list (list —100000 100000)))
d
1000

5))))

(defun ff—constrex ()
(let ((dlst (list 2 4 8 16)))
(dolist (d dlst)
(frontier—finder ”constrex”

#’constrex—search
(list (list (list .1 1.0)) (list (list 0.0 5.0)))
d
1000

5))))

(defun ff—srinivas ()
(let ((dlst (list 2 4 8 16)))
(dolist (d dlst)
(frontier—finder ”srinivas”

#’srinivas—search
(list (list (list —20 20)) (list (list —20 20)))
d
1000

-5))))

(defun ff—tanaka ()
(let ((dlst (list 2 4 8 16 32 64)))
(dolist (d dlst)
(frontier—finder ”tanaka”
#’tanaka—search
(list (list (list (— 0 pi) pi)) (list (list (— 0 pi) pi)))
d
1000

5))))

(defun weekend—run ()
(ff—fonseca)
(ff—kursawe))

(defun crowd—prune—3 (rules alpha)

(let (out current)
(setf rules (sort (copy—list rules) #’first—avg—2))
(dolist (rule rules)

(unless current
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(setf current rule)
(push current out))
(if (> (diff—angle (rule—avgs rule) (rule—avgs current)) alpha)
(progn
(push rule out)
(setf current rule))))
out))

(defun crowd—prune—2 (rules n)

(let (out)
(if (< n (length rules))
(progn

(setf rules (sort (copy—list rules) #’first—avg—2))
(let ((incr (/ (float n) (float (length rules)))) (step 0.0))
(dolist (rule rules)
(if (<= 0 step)
(progn
(push rule out)
(decf step 1.0)))
(incf step incr)))
out )
rules)))

(defun crowd—prune (rules n)

(let (out)
(if (< n (length rules))
(progn

(setf rules (sort (copy—list rules) #’first—avg—2))
(let ((chance—kept (/ (float n) (length rules))))
(dolist (rule rules)
(if (< (randf 1.0) chance—kept)
(push rule out)))))
(setf out rules))
out))

(defun first—avg (tuplel tuple2)
(< (first tuplel) (first tuple2)))

(defun first—avg—2 (rulel rule2)
(< (first (rule—avgs rulel)) (first (rule—avgs rule2))))

A.2.5 testtables.lisp

; Generates the table data in a .lisp file format for the math models testing.

;

(defun schaffer (&optional (samples 10000))
(let ((outfile (open ”../data/tests/schaffer.lisp” :direction :output :if—exists :supersede)))
(write—line ” (deftable_$schaffer _$x0_$#f1_8#f2)” outfile)
(dotimes (number samples)
(let ((x1 (- (randi 20000) 10000)))
(let ((f1 (square x1))(f2 (square (— x1 2))))
(write—line (concatenate ’string ” (!.” (write—to—string x1) ”.”

(write—to—string f1) 7.7
(write—to—string f2) ”)”) outfile))))

(close outfile)))

(defun schaffer—search (constraints &optional (samples 1000))

(let ((outfile (open ”../data/tests/schaffer.lisp” :direction :output :if—exists :supersede)))
(write—line ” (deftable_$schaffer _$x0_$#f1_8#f2)” outfile)
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(dotimes (number samples)
(let ((that (any (first constraints))))
(let ((x (+ (randf (— (second that) (first that))) (first that))))
(let ((fl1 (square x)) (f2 (square (— x 2))))
(write—line (concatenate ’string ” (!.” (write—to—string x) 7.7
(write—to—string f1) 7.7
(write—to—string f2) ”)”) outfile)))))
(close outfile)))

(defun fonseca (&optional (samples 10000))
(let ((outfile (open ”../data/tests/fonseca.lisp” :direction :output :if—exists :supersede)))
(write—line ” (deftable_$fonseca_$x0_$x1_$x2_$#f1_$#f2)” outfile)
(dotimes (number samples)
(let ((x "))
(dotimes (index—x 3)
(push (— (randf 8) 4) x))
(let ((catstr 7 (!.7))
(dolist (xi x)
(setf catstr (concatenate ’string catstr (write—to—string xi) 7.7)))
(setf catstr (concatenate ’string catstr (write—to—string (fonseca—fl x)) ”.7))
(setf catstr (concatenate ’string catstr (write—to—string (fonseca—f2 x)) 7)”))
(Write—line catstr outfile))))
(close outfile)))

(defun fonseca—search (constraints &optional (samples 1000))
(let ((outfile (open ”../data/tests/fonseca.lisp” :direction :output :if—exists :supersede)))
(write—line 7 (deftable_$fonseca_$x0_$x1_$x2_$#f1_3#f2)” outfile)
(dotimes (number samples)
(let ((x "))
(dolist (this constraints)
(let ((that (any this)))
(push (+ (randf (— (second that) (first that))) (first that)) x)))
(let ((catstr 7 (!.7))
(dolist (xi x)
(setf catstr (concatenate ’string catstr (write—to—string xi) 7.7)))
(setf catstr (concatenate ’string catstr (write—to—string (fonseca—fl x)) ”.7))
(setf catstr (concatenate ’string catstr (write—to—string (fonseca—f2 x)) 7)”))
(Write—line catstr outfile))))
(close outfile)))

;(defun fonseca—f1 (z)

;o (let ((sum 0) (n (length z)))

; (— 1 (exp (— 0 (dolist (zi =z sum)

; (incf sum (square (— i (/ 1 (sqrt n)))))))))))

(defun fonseca—fl (x)
(let ((sum 0) (n (length x)))
(dolist (xi x)
(incf sum (square (— xi (/ 1 (sqrt n))))))
(= 1 (exp (x —1 sum)))))

(defun fonseca—f2 (x)
(let ((sum 0) (n (length x)))
(= 1 (exp (— 0 (dolist (xi x sum)
(incf sum (square (+ xi (/ 1 (sart 1)))))))))))

(defun kursawe (&optional (samples 10000))
(let ((outfile (open ”../data/tests/kursawe.lisp” :direction :output :if—exists :supersede)))
(write—line ” (deftable_$kurwasa_$x0_$x1_$x2_$#f1_$#f2)” outfile)
(dotimes (number samples)
(let ((x "))
(dotimes (index—x 3)
(push (— (randf 10) 5) x))
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(let ((catstr 7 (!.7))
(dolist (xi x)
(setf catstr (concatenate ’string catstr (write—to—string xi) 7.7)))
(setf catstr (concatenate ’string catstr (write—to—string (kursawe—fl x)) ”.7))
(setf catstr (concatenate ’string catstr (write—to—string (kursawe—f2 x)) 7)”))
(write—line catstr outfile))))
(close outfile)))

(defun kursawe—search (constraints &optional (samples 1000))
(let ((outfile (open ”../data/tests/kursawe.lisp” :direction :output :if—exists :supersede)))
(write—line 7 (deftable_$kursawe_$x0_$x1_$x2_$#f1_3#f2)” outfile)
(dotimes (number samples)
(let ((x "))
(dolist (this constraints)
(let ((that (any this)))
(push (+ (randf (— (second that) (first that))) (first that)) x)))
(let ((catstr 7 (!.7))
(dolist (xi x)
(setf catstr (concatenate ’string catstr (write—to—string xi) 7.7)))
(setf catstr (concatenate ’string catstr (write—to—string (kursawe—fl x)) ”.7))
(setf catstr (concatenate ’string catstr (write—to—string (kursawe—f2 x)) 7)”))
(Write—line catstr outfile))))
(close outfile)))

(defun kursawe—fl (x)
(+ (* —10.0 (exp (* —.2 (sqrt (+ (square (first x)) (square (second x)))))))
(* —10.0 (exp (* —.2 (sqrt (+ (square (second x)) (square (third x)))))))))

(defun kursawe—f2 (x) ;a = .8, b = 8
(let ((sum 0) (n (length x)) (a .8) (b 3.0))
(dolist (xi x sum)
(incf sum (+ (expt (abs xi) a) (* 5.0 (sin (expt xi b))))))))

(defun zdtl (&optional (samples 10000))
(let ((outfile (open ”../data/tests/zdtl.lisp” :direction :output :if—exists :supersede)))
(let ((catstr ”(deftable_$zdtl1”))
(dotimes (index—x 30)
(setf catstr (concatenate ’string catstr ”_$x” (write—to—string index—x))))
(setf catstr (concatenate ’string catstr 7_S$#f1_$#f2)”))
(write—line catstr outfile))
(dotimes (number samples)
(let ((x *0))
(dotimes (index—x 30)
(push (randf 1.0) x))
(let ((catstr 7 (!'.7))
(dolist (xi x)
(setf catstr (concatenate ’string catstr (write—to—string xi) 7.7)))
(setf catstr (concatenate ’'string catstr (write—to—string (zdtl—fl x)) ”.”))
(setf catstr (concatenate ’string catstr (write—to—string (zdtl—f2 x)) 7)”))
(write—line catstr outfile))))

(close outfile)))

(defun zdtl—f1 (x)
(let ((sum 0) (n (length x)))
(first x)))

(defun zdtl—f2 (x)
(let ((sum 0) (n (length x)))
(% (zdtl—g x) (— 1 (sqrt (/ (first x) (zdtl—g x)))))))
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(defun zdtl—g (x)
(let ((sum 0) (n (length x)))
(+ 1 (x 9.0 (/ (dolist (xi (rest x) sum)
(incf sum xi))

(= n 1))))))

(defun zdt2 (&optional (samples 10000))
(let ((outfile (open ”../data/tests/zdt2.lisp” :direction :output :if—exists :supersede)))
(let ((catstr ”(deftable_$zdt2”))
(dotimes (index—x 30)
(setf catstr (concatenate ’string catstr ”_$x” (write—to—string index—x))))
(setf catstr (concatenate ’string catstr 7_S$#f1_$#f2)”))
(write—line catstr outfile))
(dotimes (number samples)
(let ((x "))
(dotimes (index—x 30)
(push (randf 1.0) x))
(let ((catstr 7 (!.7))
(dolist (xi x)
(setf catstr (concatenate ’string catstr (write—to—string xi) 7.7)))
(setf catstr (concatenate ’string catstr (write—to—string (zdt2—f1l x)) ”.7))
(setf catstr (concatenate ’string catstr (write—to—string (zdt2—f2 x)) ”)”))
(write—line catstr outfile))))

(close outfile)))

(defun zdt2—f1 (x)
(let ((sum 0) (n (length x)))
(first x)))

(defun zdt2—-f2 (x)
(let ((sum 0) (n (length x)))
(% (zdt2—g x) (— 1 (square (/ (first x) (zdt2—g x)))))))

(defun zdt2—g (x)
(let ((sum 0) (n (length x)))
(+ 1 (x 9.0 (/ (dolist (xi (rest x) sum)
(incf sum xi))

(= mn 1))))))

(defun zdt3 (&optional (samples 10000))
(let ((outfile (open ”../data/tests/zdt3.lisp” :direction :output :if—exists :supersede)))
(let ((catstr ”(deftable_$zdt3”))
(dotimes (index—x 30)
(setf catstr (concatenate ’string catstr ”_$x” (write—to—string index—x))))
(setf catstr (concatenate ’string catstr 7_$#f1_$#f2)”))
(write—line catstr outfile))
(dotimes (number samples)
(let ((x "))
(dotimes (index—x 30)
(push (randf 1.0) x))
(let ((catstr 7 (!.7))
(dolist (xi x)
(setf catstr (concatenate ’string catstr (write—to—string xi) 7.7)))
(setf catstr (concatenate ’string catstr (write—to—string (zdt3—fl x)) ”.7))
(setf catstr (concatenate ’string catstr (write—to—string (zdt3—f2 x)) 7)”))
(write—line catstr outfile))))
(close outfile)))

(defun zdt3—fl1 (x)
(let ((sum 0) (n (length x)))
(first x)))
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(defun zdt3—f2 (x)
(let ((sum 0) (n (length x)))
(*  (zdt3—g x) (— 1 (sqrt (/ (first x) (zdt3—g x)))
(+« (/ (first x) (zdt3—g x)) (sin (x 10.0 pi (first x))))))))

(defun zdt3—g (x)
(let ((sum 0) (n (length x)))
(+ 1 (x 9.0 (/ (dolist (xi (rest x) sum)
(incf sum xi))

(=mn 1))))))

(defun zdt4 (&optional (samples 10000))
(let ((outfile (open ”../data/tests/zdt4.lisp” :direction :output :if—exists :supersede)))
(let ((catstr ”(deftable_$zdt4”))
(dotimes (index—x 10)
(setf catstr (concatenate ’string catstr ”_.$x” (write—to—string index—x))))
(setf catstr (concatenate ’string catstr 7_$#f1_$#f2)”))
(write—line catstr outfile))
(dotimes (number samples)
(let ((x "))
(push (randf 1.0) x)
(dotimes (index—x 9)
(push (— (randf 10) 5) x))
(let ((catstr 7 (!'.7))
(dolist (xi x)
(setf catstr (concatenate ’string catstr (write—to—string xi) 7.7)))
(setf catstr (concatenate ’'string catstr (write—to—string (zdt4—fl x)) ”.”))
(setf catstr (concatenate ’string catstr (write—to—string (zdt4—f2 x)) 7)”))
(write—line catstr outfile))))

(close outfile)))

(defun zdt4—f1 (x)
(let ((sum 0) (n (length x)))
(first x)))

(defun zdt4—f2 (x)
(let ((sum 0) (n (length x)))
(* (zdt4d—g x) (— 1 (square (/ (first x) (zdtd—g x)))))))

(defun zdtd—g (x)
(let ((sum 0) (n (length x)))
(+ 1 (x 10 (— n 1)) (dolist (xi (rest x) sum)
(incf sum (— (square xi) (% 10 (cos (% 4 pi xi)))))))))

(defun zdt6 (&optional (samples 10000))
(let ((outfile (open ”../data/tests/zdt6.lisp” :direction :output :if—exists :supersede)))
(let ((catstr ”(deftable_$zdt6”))
(dotimes (index—x 10)
(setf catstr (concatenate ’string catstr ”_.$x” (write—to—string index—x))))
(setf catstr (concatenate ’string catstr 7_$#f1_$#f2)"))
(write—line catstr outfile))
(dotimes (number samples)
(let ((x "))
(dotimes (index—x 10)
(push (randf 1.0) x))
(let ((catstr 7 (!.7))
(dolist (xi x)
(setf catstr (concatenate ’string catstr (write—to—string xi) 7.7)))
(setf catstr (concatenate ’string catstr (write—to—string (zdt6—fl x)) ”.7))

(setf catstr (concatenate ’string catstr (write—to—string (zdt6—f2 x)) 7)”))
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(write—line catstr outfile))))

(close outfile)))

(defun zdt6—f1 (x)
(let ((sum 0) (n (length x)))
(= 1 (x (exp (% —4 (first x))) (expt (sin (¥ 6 pi (first x))) 6)))))

(defun zdt6—f2 (x)
(let ((sum 0) (n (length x)))
(% (zdt6—g x) (— 1 (square (/ (zdt6—fl x) (zdt6—g x)))))))

(defun zdt6—g (x)
(let ((sum 0) (n (length x)))
(+ 1 (x 9.0 (expt (/ (dolist (xi (rest x) sum)
(incf sum xi))

(= mn 1)) .25)))))

(defun viennet2 (&optional (samples 10000))

(let ((outfile (open ”../data/tests/viennet2.lisp” :direction :output :if—exists :supersede)))
(write—line 7 (deftable_$viennet2 $x1_3$x2_S#f1_$#f2_$#f3)” outfile)
(dotimes (number samples)

(let ((x1 (— (randf 8.0) 4)) (x2 (— (randf 8.0) 4)))

(write—line (concatenate ’string ” (!.” (write—to—string x1) ”_.”
(write—to—string x2) 7.7
(write—to—string (viennet2—f1 x1 x2)) ”.”
(write—to—string (viennet2—f2 x1 x2)) 7.7
(write—to—string (viennet2—f3 x1 x2)) 7)”)
outfile)))
(close outfile)))

(defun viennet2—f1l (x1 x2)
(+ 3.0 (/ (square (— x1 2)) 2) (/ (square (+ x1 1)) 13)))

(defun viennet2—f2 (x1 x2)
(+ —17.0 (/ (square (+ x1 x2 —3)) 36) (/ (square (— x2 x1 —2)) 8)))

(defun viennet2—f3 (x1 x2)
(+ —13.0 (/ (square (+ x1 (x 2 x2) —1)) 175) (/ (square (+ x1 (x 2 x2))) 17)))

(defun viennet3 (&optional (samples 10000))
(let ((outfile (open ”../data/tests/viennet3.lisp” :direction :output :if—exists :supersede)))
(write—line ” (deftable_$viennet3 _$x1_$x2_S#f1_$#f2_8#f3)” outfile)
(dotimes (number samples)
(let ((x1 (— (randf 6.0) 3)) (x2 (— (randf 6.0) 3)))
(write—line (concatenate ’string 7 (!.” (write—to—string x1) ”.”
(write—to—string x2) ”.”
(write—to—string (viennet3—fl x1 x2)) 7.7
(write—to—string (viennet3—f2 x1 x2)) 7.7
(write—to—string (viennet3—f3 x1 x2)) ”7)”)
outfile)))
(close outfile)))

(defun viennet3—f1 (x1 x2)
(+ (% .5 (square x1)) (square x2) (sin (4+ (square x1) (square x2)))))

(defun viennet3—f2 (x1 x2)
(+ 15.0 (/ (square (+ (* 3 x1) (x —2 x2) 4)) 8) (/ (square (+ x1 (x —1 x2) 1)) 27)))

(defun viennet3—f3 (x1 x2)
(= (/ 1 (+ (square x1) (square x2) 1)) (* 1.1 (exp (* —1 (4+ (square x1) (square x2)))))))
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;BEGIN CONSTRAINTS

(defun constr—ex (&optional (samples 10000))
(let ((outfile (open ”../data/tests/constrex.lisp” :direction :output :if—exists :supersede))
(rowcount 0))
(write—line ”(deftable_$constrex_$x1_8$x2_$#f1_$#f2)” outfile)
(loop while (< rowcount samples) do
(let ((x1 (+ (randf .9) .1)) (x2 (randf 5.0)))
(if (and (>= (+ x2 (* 9 x1)) 6)
(>= (+ (+ =1 x2) (+ 9 x1)) 1))
(progn

(incf rowcount)

» »

(write—line (concatenate ’string ” (!.” (write—to—string x1)

(write—to—string x2) ”.”

(write—to—string (constr—ex—fl x1 x2)) 7.7
(write—to—string (constr—ex—f2 x1 x2)) 7)”)

outfile)))))
(close outfile)))

(defun constr—ex—f1 (x1 x2)
x1)

(defun constr—ex—f2 (x1 x2)
(/ (+ 1 x2) x1))

(defun constrex—search (constraints &optional (samples 1000))
(let ((outfile (open ”../data/tests/constrex.lisp” :direction :output :if—exists :supersede))
(rowcount 0) (attempts 0) (maxsamples (% 10 samples)))
(write—line ” (deftable_$constrex _$x1_$x2_$#f1_$#f2)” outfile)
(loop while (and (< rowcount samples) (< attempts maxsamples)) do
(let ((thatxl (any (first constraints)))
(thatx2 (any (second constraints))))
(let ((x1 (+ (randf (— (second thatxl) (first thatxl))) (first thatxl)))
(x2 (+ (randf (— (second thatx2) (first thatx2))) (first thatx2))))
(incf attempts)
(if (and >= (+ x2 (* 9 x1)) 6)
(>= (= (* 9 x1) x2) 1))
(progn
(incf rowcount)

(write—line (concatenate ’string ” (!.” (write—to—string x1) ”.”

(write—to—string x2) 7.7

(write—to—string (constr—ex—fl x1 x2)) 7.7
(write—to—string (constr—ex—f2 x1 x2)) 7)”)

outfile))))))

(close outfile)))

(defun tanaka (&optional (samples 10000))
(let ((outfile (open ”../data/tests/tanaka.lisp” :direction :output :if—exists :supersede))
(rowcount 0))
(write—line ” (deftable_$tanaka_$x1_$x2_$#f1_8#f2)” outfile)
(loop while (< rowcount samples) do
(let ((x1 (= (randf (x 2 pi)) pi)) (x2 (= (randf (x 2 pi)) pi)))
(if (and (<= (— 1.0 (square x1) (square x2) (*x —0.1 (cos (x 16 (atan (/ x1 x2)))))) 0)
(<= (+ (square (— x1 .5)) (square (— x2 .5))) .5))
(progn
(incf rowcount)
(write—line (concatenate ’string 7 (!.” (write—to—string x1) 7.7
(write—to—string x2) ”_.”
(write—to—string (tanaka—fl x1 x2)) 7.7
(write—to—string (tanaka—f2 x1 x2)) ”7)”)

outfile)))))

(close outfile)))
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(defun tanaka—search (constraints &optional (samples 1000))
(let ((outfile (open ”../data/tests/tanaka.lisp” :direction :output :if—exists :supersede))
(rowcount 0) (attempts 0) (maxsamples (*x 10 samples)))
(write—line 7 (deftable_$tanaka_$x1_$x2_$#f1_8$#f2)” outfile)
(loop while (and (< rowcount samples) (< attempts maxsamples)) do
(let ((thatxl (any (first constraints)))
(thatx2 (any (second constraints))))
(let ((x1 (+ (randf (— (second thatxl) (first thatx1l))) (first thatxl)))
(x2 (+ (randf (— (second thatx2) (first thatx2))) (first thatx2))))
(incf attempts)
(if (and (<= (= 1.0 (square x1) (square x2) (* —0.1 (cos (x 16 (atan (/ x1 x2))))))
0)
(<= (+ (square (— x1 .5)) (square (— x2 .5))) .5))
(progn
(incf rowcount)
(write—line (concatenate ’string ” (!.” (write—to—string x1) ”.”
(write—to—string x2) 7.7
(write—to—string (tanaka—fl x1 x2)) 7.7
(write—to—string (tanaka—f2 x1 x2)) 7)”)

outfile))))))

(close outfile)))

(defun tanaka—fl (x1 x2)
x1)

(defun tanaka—f2 (x1 x2)
x2)

(defun osyczka2 (&optional (samples 10000))
(let ((outfile (open ”../data/tests/osyczka2.lisp” :direction :output :if—exists :supersede))
(rowcount 0))
(write—line ” (deftable_$osyczka2_$x1_$x2_$x3_$x4._8x5_3x6_8#f1 _$#f2)” outfile)
(loop while (< rowcount samples) do
(let ((x1 (randf 10.0)) (x2 (randf 10.0))
(x3 (+ (randf 4.0) 1.0)) (x4 (randf 6.0))
(x5 (+ (randf 4.0) 1.0)) (x6 (randf 10.0)))
(if (and (<= 0 (+ x1 x2 —2.0))
(<= 0 (= 6.0 x1 x2))
(<= 0 (= x1 x2 —2.0))
(<=0 (+ 2 (* —1.0 x1) (% 3.0 x2)))
(<= 0 (— 4 (square (— x3 3)) x4))
(<= 0 (+ (square (— x5 3)) x6 —4.0)))
(progn
(incf rowcount)

(write—line (concatenate ’string ” (!.”

(write—to—string x1) ”.”
(write—to—string x2) ”.”
(write—to—string x3) ”.”
(write—to—string x4) 7.7
(write—to—string x5) ”.”
(write—to—string x6) ”.”
(write—to—string (osyczka2—fl x1 x2 x3 x4 x5 x6)) 7.7
(write—to—string (osyczka2—f2 x1 x2 x3 x4 x5 x6)) ”)”)
outfile)))))
(close outfile)))

(defun osyczka2—f1l (x1 x2 x3 x4 x5 x6)
(+ (square (— x2 2))
(* —25.0 (square (— x1 2)))
(% (square (— x3 1)) (square (— x4 4)))
(square (— x5 1))))
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(defun osyczka2—f2 (x1 x2 x3 x4 x5 x6)
(+ (square x1) (square x2) (square x3) (square x4) (square x5) (square x6)))

(defun srinivas (&optional (samples 10000))
(let ((outfile (open ”../data/tests/srinivas.lisp” :direction :output :if—exists :supersede))
(rowcount 0))
(write—line ” (deftable_$srinivas _$x1_$x2_$#f1_$#f2)” outfile)
(loop while (< rowcount samples) do
(let ((x1 (— (randf 40.0) 20))
(x2 (= (randf 40.0) 20)))
(if (and (<= (4 (square x1) (square x2)) 225)
(<= (= x1 (% 3 x2)) —10))
(progn

(incf rowcount)

» »

(write—line (concatenate ’string ” (!.” (write—to—string x1)

(write—to—string x2) ”.”

(write—to—string (srinivas—fl x1 x2)) ”.”
(write—to—string (srinivas—f2 x1 x2)) ”)”)
outfile)))))

(close outfile)))

(defun srinivas—search (constraints &optional (samples 1000))
(let ((outfile (open ”../data/tests/srinivas.lisp” :direction :output :if—exists :supersede))
(rowcount 0) (attempts 0) (maxsamples (*x 10 samples)))
(write—line 7 (deftable_$srinivas_$x1_$x2_8#f1_$#f2)” outfile)
(loop while (and (< rowcount samples) (< attempts maxsamples)) do
(let ((thatxl (any (first constraints)))
(thatx2 (any (second constraints))))
(let ((x1 (+ (randf (— (second thatxl) (first thatx1))) (first thatx1l)))
(x2 (+ (randf (— (second thatx2) (first thatx2))) (first thatx2))))
(incf attempts)
(if (and (<= (4+ (square x1) (square x2)) 225)
(<= (= x1 (* 3 x2)) —10))
(progn

(incf rowcount)

» » o

(write—line (concatenate ’string ” (!.” (write—to—string x1)

(write—to—string x2) 7.7

(write—to—string (srinivas—fl x1 x2)) ”.”
(write—to—string (srinivas—f2 x1 x2)) ”7)”)
outfile))))))

(close outfile)))

(defun srinivas—fl (x1 x2)
(+ (square (— x1 2)) (square (— x2 1)) 2))

(defun srinivas—f2 (x1 x2)
(= (* 9 x1 ) (square (— x2 1))))

(defun golinski (&optional (samples 10000))
(let ((outfile (open ”../data/tests/golinski.lisp” :direction :output :if—exists :supersede))
(rowcount 0))
(write—line ” (deftable_$golinski_$x1_$x2_$x3_8x4_8x5_8x6_8xT7_$#f1_$#f2)” outfile)
(loop while (< rowcount samples) do
(let ((x1 (4+ (randf 1.0) 2.6))
(x2 (4+ (randf 0.1) 0.7))
(x3 (4+ (randf 11.0) 17.0))
(x4 (+ (randf 1.0) 7.3))
(x5 (4+ (randf 1.0) 7.3))
(x6 (4+ (randf 1.0) 2.9))
(x7 (+ (randf 0.5) 5.5)))
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(if (and (<= (= (/ 1.0 (* x1 (square x2) x3)) (/ 1.0 27.0)) 0)
(<= (= (/ 1.0 (* x1 (square x2) (square x3))) (/ 1.0 397.5)) 0)
(<= (= (/ (* x4 x4 x4) (*x x2 x3 x3 x6 x6 x6 x6)) (/ 1.0 1.93)) 0)
(<= (= (/ (* xb x5 xb) (x x2 x3 x7 x7 x7 x7)) (/ 1.0 1.93)) 0)
(<= (= (* x2 x3) 40.0) 0)
(<= (= (/ x1 x2) 12.0) 0)
(<= (= 5.0 (/ x1 x2)) 0)
(<= (+ 1.9 (x —1.0 x4) (* 1.5 x6)) 0)
(<= (+ 1.9 (x —1.0 x5) (x 1.1 x7)) 0)
(<= (golinski—f2 x1 x2 x3 x4 x5 x6 x6) 1300.0)
(<= (/ (sqrt (+ (square (golinski—a x1 x2 x3 x4 x5 x6 x7))
(golinski—b x1 x2 x3 x4 x5 x6 xT7)))
(% 0.1 x7 x7 x7)) 1100.0))
(progn

(incf rowcount)

» »

(write—line (concatenate ’string 7 (!.” (write—to—string x1)
(write—to—string x2) ”.”
(write—to—string x3)
(write—to—string x4) 7.7
(write—to—string x5) 7.7
(write—to—string x6) ”.”
(write—to—string x7)
(write—to—string (golinski—f1l x1 x2 x3 x4 x5 x6 x7)) ”_”
(write—to—string (golinski—f2 x1 x2 x3 x4 x5 x6 x7)) ”)”

)
outfile)))))
(close outfile)))

(defun golinski—fl (x1 x2 x3 x4 x5 x6 xT7)
(+ (% .7854 x1 (square x2) (+ (*x 10 (square x3) (/ 1 3)) (x 14.933 x3) —49.0934))
(* —1.508 x1 (4 (square x6) (square x7)))
(% 7.477 (+ (expt x6 3) (expt x7 3)))
(x 0.7854 (4 (x x4 x6 x6) (* xb x7 x7)))))

(defun golinski—f2 (x1 x2 x3 x4 x5 x6 xT7)
(/ (sqrt (+ (square (golinski—a2 x1 x2 x3 x4 x5 x6 x7))
(* 1.69 (expt 10.0 7))))
(¥ 0.1 x6 x6 x6)))

(defun golinski—a (x1 x2 x3 x4 x5 x6 x7)
(/ (% 745.0 x5) (x x2 x3)))

(defun golinski—a2 (x1 x2 x3 x4 x5 x6 x7)
(/ (x 745.0 x4) (* x2 x3)))

(defun golinski—b (x1 x2 x3 x4 x5 x6 x7)
(x 1.575 (expt 10.0 8)))

(defun viennet4 (&optional (samples 10000))
(let ((outfile (open ”../data/tests/viennet4d.lisp” :direction :output :if—exists :supersede))
(rowcount 0))
(write—line ” (deftable_$viennet4 _ $x1_$x2_$H#f1_$#f2_8#f3)” outfile)
(loop while (< rowcount samples) do
(let ((x1 (— (randf 8.0) 4))
(x2 (— (randf 8.0) 4)))
(if (and (>= (— 4 x2 (x 4 x1)) 0)
= (+ x1 1) 0)
(>= (+ x2 (* —1.0 x1) 2) 0))
(progn

(incf rowcount)

(write—line (concatenate ’string 7 (!.” (write—to—string x1) 7.7
(write—to—string x2) ”.”

(write—to—string (viennet4d—fl x1 x2)) ”._.”
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(write—to—string (viennet4—f2 x1 x2)) 7.7
(write—to—string (viennet4—f3 x1 x2)) ”)”)

outfile)))))

(close outfile)))

(defun viennet4—f1 (x1 x2)
(+ (/ (square (= x1 2)) 2) (/ (square (+ x2 1)) 13) 3))

(defun viennet4—f2 (x1 x2)
(+ (/ (square (+ x1 x2 —3)) 175)
(/ (square (— (* 2 x2) x1)) 17)
—13))

(defun viennet4—f3 (x1 x2)
(+ (/ (square (+ (* 3 x2) (x —2 x2) 4)) 8)
(/ (square (+ x1 (*x —1.0 x2) 1)) 27)
15))

(defun water (&optional (samples 10000))
(let ((outfile (open ”../data/tests/water.lisp” :direction :output :if—exists :supersede))
(rowcount 0))
(write—line ” (deftable_$water_ $x1_$x2_$x3_$#f1 _$H#F2 _$H#3 _$#f4 _$#f5)” outfile)
(loop while (< rowcount samples) do
(let ((x1 (+ (randf .44) .01))
(x2 (4+ (randf .09) .01))
(x3 (4+ (randf .09) .01)))
(if (and (>= (+ 1 (/ —.00139 (* x1 x2)) (* 4.94 x3) —.08) 0)
(>= (+ 1 (/ —.000306 (+ x1 x2)) (x 1.082 x3) —.0986) 0)
(>= (+ 5000 (/ —12.307 (% x1 x2)) (x 4.9408 x3) 4051.02) 0)
(>= (+ 16000 (/ —2.09 (x x1 x2)) (* 8046.33 x3) —696.71) 0)
(>= (+ 10000 (/ —2.138 (x x1 x2)) (% 7883.39 x3) —705.04) 0)
(>= (+ 2000 (/ —.417 (* x1 x2)) (% 1721.26 x3) —136.54) 0)
(>= (+ 550 (/ —.164 (* x1 x2)) (* 631.13 x3) —54.48) 0))
(progn

(incf rowcount)

(write—line (concatenate ’string 7 (!.” (write—to—string x1) ”.”
(write—to—string x2) 7.7
(write—to—string x3) ”.”
(write—to—string (water—fl x1 x2 x3)) "_.”
(write—to—string (water—f2 x1 x2 x3)) ”.”
(write—to—string (water—f3 x1 x2 x3)) ”.”
(write—to—string (water—f4 x1 x2 x3)) ”._.”
(write—to—string (water—f5 x1 x2 x3)) ”7)”)

outfile)))))

(close outfile)))

(defun water—fl (x1 x2 x3)
(+ (* 106780.37 (4+ x2 x3)) 61704.67))

(defun water—f2 (x1 x2 x3)
(x 3000 x1))

(defun water—f3 (x1 x2 x3)
(/ (= 305700 2289 x2) (expt (* .06 2289) .65)))

(defun water—f4 (x1 x2 x3)
(x 250 2289 x2 (exp (+ (* —39.75 x2) (x 9.9 x3) 2.74))))

(defun water—f5 (x1 x2 x3)
(/ (* 25 1.39) (+ (* xl x2) (* 4940 x3) —80.0)))

(defun build—all—test—datasets ()

(reset—seed)
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(schaffer)
(fonseca)
(kursawe)
(zdtl)
(zdt2)
(zdt3)
(zdt4)
(zdt6)
(osyczka2)
(tanaka)
(constr—ex)
(srinivas)
(golinski)
(viennet?2)
(viennet3)
(viennet4)

(water)

(defun learn—all—test—datasets ()
(!learnl ”schaffer”)
(!learnl ”fonseca”)
(!learnl ”kursawe”)
(!learnl ”zdtl”)
(!learnl ”zdt2”)
(!learnl ”zdt3”)
(!learnl ”zdtd”)
(!learnl ”zdt6”)
(!learnl ”osyczka2”)
(!learnl ”tanaka”)
(!learnl ”constr—ex”)
(!learnl ”srinivas”)
(!learnl ”viennet2”)
(!learnl ”viennet3”)
(!learnl ”viennetd”)

(!learnl ”water”)

A.2.6 how.lisp

Some portions written by Dr. Menzies

; This implements the How loop (in the code still referred to as which2,
;since which2 was the original mname for this extension)

;

;

(defparameter xeveryx ’allqzjx)

(defun which2 (&optional (tbl (thetable)) (s 2))
(train tbl)
(learn tbl s)

)

(defun which2n (&optional (tbl (thetable)))
(learnn tbl))

(defun train (tbl)
(dolist (row (therows tbl))

(how—manys (thecols tbl) ; get the column headers
(row—cells row) ; get the cells
(row—class row) ; get the class of this row
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)))

(defun how—manys (cols cells class)
(labels ((worker (col cell)
(how—many class
(col—name col)
cell
(sym—counts col))))

(mapcar #’worker cols cells))) ; run down cols and cells in parallel

(defun how—many (class what cell hash)
(when (knownp cell) ; skip any cell labelled 72”7
(inch ‘(,class ,what ,cell) hash)
(inch ‘(,*everyx ,what ,cell) hash)))

(defun inch (key hash)
”increment._a_hash_bucket_from_zero”
(incf (gethash key hash 0)))

(defun !'how—manysl ()
(reset—seed)
(data ”../data/discrete—lisp/weather.lisp”)
(train (thetable))
(with—output—to—string (s)
(dolist (col (thecols))

(showh (sym—counts col) :stream s))))

(deftest !how—manys ()
(test (!how—manysl)

? (ALLQZJX _FORECAST_OVERCAST) .=_4
________ (ALLQZJX _FORECAST_RAINY) _=_5
________ (ALLQZJX _FORECAST_SUNNY) _=._5
________ (NO_FORECAST_RAINY) _.=_2
— (NO_FORECAST_SUNNY) .=._3
________ (YES_FORECAST_OVERCAST) .=_4
________ (YES_FORECAST_RAINY) _=._3
________ (YES_FORECAST_SUNNY) _=._2
- (ALLQZJX _TEMP_COOL) _=_4
________ (ALLQZJX_TEMP._HOT) _=_4
________ (ALLQZJX _TEMP_MILD) .=_6
________ (NO_TEMP_COOL) .=_1
________ (NO_TEMP_HOT) _=._2
________ (NO_TEMP_MILD) _=_2
________ (YES_TEMP_COOL) _.=._3
~ (YES_TEMP_HOT) .=
________ (YES_TEMP_MILD) .=_4
________ (ALLQZJX _HUMIDTY _HIGH) .=_7
________ (ALLQZJX _HUMIDTY _NORMAL) _=._7
_ (NO_HUMIDTY_HIGH) _=_4
________ (NO-HUMIDTY.NORMAL) _.=_1
________ (YES_HUMIDTY_HIGH) .=_3
________ (YES_HUMIDTY _NORMAL) _=._6
________ (ALLQZJX _WINDY_FALSE) _=_8
________ (ALLQZJX _WINDY_TRUE) _=._6
________ (NO_WINDY_FALSE) =2
-~ (NO_WINDY_TRUE) .=.3
________ (YES_WINDY_FALSE) _.=._6
________ (YES_WINDY_TRUE) _=._3
________ (ALLQZJX_ !PLAY_NO) _=_5
- (ALLQZJX_.!PLAY_YES) .=_9
________ (NO-!PLAY_NO) .=.5
________ (YES_!PLAY_YES) .=.9"))
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(defun learn (tbl s)
(let ((out *()))
(dolist (target (theklasses tbl) out)
(push (learnl target tbl s) out))))

(defun learnn (tbl)
(roundsn (roundOn tbl) tbl))

(defun learnl (target tbl s)
(let ((which (round0 target tbl)))
(rounds target which tbl s)))

(defun roundO (target tbl)
(let ((out *()))
(dolist (col (thecols tbl))
(unless (col—goalp col)
(dokeys (key (sym—counts col))
(push (list 0 (second key) (third key)) out))))

(remove—duplicates out :test #’equal)))

(defun roundOn (tbl)
(let ((out *()))
(dolist (row (therows tbl))
(let ((countr 0))
(dolist (this (row—cells row))
(unless (col—goalp (nth countr (table—cols tbl)))
(push (list 0 (col—name (nth countr (table—cols tbl))) this) out))
(incf countr))))

(remove—duplicates out :test #’equal)))

(defun rule—match (row rule table)
(let ((colnums ’()) (countr 0) (out t))
(dolist (this (table—cols table))
(push (list (col—name this) countr) colnums)
(incf countr))
(dolist (thisors (rule—ands rule) out)
(unless (member (nth (getcolnum (ors—for thisors) colnums) (row-—cells row)) (ors—values
thisors))
(setf out nil)))))

;(defun round0 (target tbl)

;o (let (out

; (n (length (therows tbl))))

; (labels

; ((worker (hash want m what class value &auzx s)

; (if (eql class want)

; (if (setf s (b°2/b+r hash want m n what value))
; (push (list (round s 0.01)

; what wvalue)

; 0ut)))))

H (dolist (col (thecols tbl)) ; for every column

; (unless (col—goalp col) ; that’s mot the goal

; (dokeys (key (sym—counts col))

; (print key) ; for everything counted in that col
; (worker (sym—counts col) ; get the hash table counds

H (klass—name target) ; what class are we targetting?
; (klass—n target) ; how many of them do we have?
; (col—name col) ; what ts the col name?

; (first key) ; what class is being counted?
; (third key) ; what wvalue we looking at?
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; ))))
; (sort out #> :key #’first))))

(defun b"2/b+r (hash want m n what value)
(letx ((every (gethash ‘(,xeveryx ,what ,value) hash 0))

(b0 (gethash ‘(,want ,what, value) hash 0))
(r0 (— every b0))
(b (/ b0 m)) ; Tatio in target
(r (/ r0O (— nm)))) ; ration everwhere else
(if (> b r) ; in more better than rester

(/ (+ b b) ; b2/(b+r)
(+ b r (randf 0.0000001))))))

(defun roundsn (which tbl)
(let ((lives 5) (rules ’()) (round 1) (max 0) (zero—score t))
(dolist (this which)
(let ((that (to—rule ’blandgxzy this)))
(setf (rule—score that) (scoren that tbl))
(unless (> 4 (rule—support that))
(push that rules))))
(loop while (> lives 0) do
(let ((this nil) (found nil))
(dotimes (number 20)
(setf this (combine (twos (explode (normalize rules)))))
(setf (rule—score this) (scoren this tbl))
(dolist (that rules)
(if (equalp this that)
(setf found t)))
(unless (or found (>= 4 (rule—support this)))
(push this rules))))
(setf rules (prune rules))
(if (> (rule—score (first rules)) max)
(setf max (rule—score (first rules))
lives 6))
(incf round)
(decf lives))

(final—prune rules)))

(defun rounds (class which tbl s)
(let ((lives 5) (rules ’()) (round 1) (max 0) (zero—score t))
(dolist (this which)
(push (to—rule (klass—name class) this) rules))
(dolist (r rules)
(setf (rule—score r) (score r tbl s))
(if (> (rule—score r) 0)
(setf zero—score nil)))
(if zero—score
rules
(progn
(loop while (> lives 0) do
(let ((this nil) (found nil))
(dotimes (number 20)
(setf this (combine (twos (explode (normalize rules)))))
(setf (rule—score this) (score this tbl s))
(dolist (that rules)
(if (equalp this that)
(setf found t)))
(unless (or found (= 0 (rule—support this)))
(push this rules)))
(setf rules (prune rules))
(if (> (rule—score (first rules)) max)
(setf max (rule—score (first rules))
lives 6))
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(incf round)
(decf lives)))
(final—prune rules)))))

(defun !tablel ()
(data ”../data/discrete—lisp/iris.lisp”)
(print (thetable)))

(defun !table2 ()
(data ”../data/numeric/servo.lisp”)
(print (discretizetbln (thetable) 3)))

(defun !table3 ()
(data ”../data/LispData/ant/0Ol—ant—a.lisp”)
(print (discretizetblcode (thetable) 10)))

(defun !learnl (str)
(reset—seed)
(data (concatenate ’string ”../data/tests/” str ”.lisp”))
(which2n (discretizetbln (thetable) 2)))

(defun !learn2 ()
(reset—seed)
(data ”../data/proj3/schaffer.lisp”)
(which2 (discretizetbl (thetable))))

(defun !learn3 ()
(data ”../data/proj3/iris.lisp”)
(which2 (discretizetbl (thetable))))

(defun !learnd ()
(reset—seed)
(data ”../data/numeric—lisp/weather.lisp”)
(which2n (discretizetbln (thetable))))

(defun !learn5 ()
(reset—seed)
(data ”../data/xerces/xercesl2.lisp”)
(which2n (discretizetbln (thetable))))

(defun !learnandrew ()
(reset—seed)
(data ”../data/china.lisp”)
(which2n (discretizetbln (thetable))))

(defun !learnlgn ()
(reset—seed)
(data ”1lgqn/lgn.lisp”)
(print—output (thetable))
(which2n (discretizetbln (thetable))))

(defun !averageslqn ()
(reset—seed)
(data ”1qn/lgn.lisp”)
(table—averages (thetable)))

(defun !printtablelgn ()
(data "lgn/lgn.lisp”)
(print (thetable)))

(defun table—averages (tbl)

(let ((out ’()) (1 (length (row-—cells (first (table—rows tbl))))))
(dolist (this (table—rows tbl) out)
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(push (list (nth (— 1 1) (row—cells this)) (nth (= 1 2) (row—cells this))) out))))

(defun print—output (tbl)
(let ((out ’()) (1 (length (row-—cells (first (table—rows tbl))))))
(dolist (this (table—rows tbl) out)
(print (list (nth (— 1 1) (row—cells this)) (nth (—= 1 2) (row—cells this)) 2 )))))

;(deftest !learn ()
; (test (!llearnl)
; 7ii; NO
5 (56 HUMIDTY HIGH)
; (44 FORECAST SUNNY)
; (89 WINDY TRUE)
: (26 TEMP HOT)
: (22 FORECAST RAINY)
;55 YES
; (51 HUMIDTY NORMAL)
: (44 FORECAST OVERCAST)
(42 WINDY FALSE)
(23 TEMP MILD)
: (21 TEMP COOL)”))

A.3 Other

A.3.1 angle.lisp

(defun similarity (a b)
(/ (float (dot—product a b)) (float (* (magnitude a) (magnitude b)))))

(defun dot—product (a b)
(if (null a)
0
(+ (* (first a) (first b)) (dot—product (rest a) (rest b)))))

(defun magnitude (a)

(sqrt (sum—of—squares a)))

(defun sum—of—squares (a)
(if (null a)
0
(+ (square (first a)) (sum—of—squares (rest a)))))

(defun diff—angle (a b)
(let ((k (similarity a b)))
(if (> k 1)
(setf k 1.0))

(radians—to—degrees (acos k))))

(defun radians—to—degrees (theta)
(* theta (/ 180.0 pi)))

A.3.2 Dbestof.lisp
Written by Dr. Menzies

(defun maxof (1 &key (test #’>) (key #’identity) (result #’identity))

(bestof 1 test key result most—negative—fixnum nil))
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(defun minof (1 &key (test #’<) (key #’identity) (result #’identity))
(bestof 1 test key result most—positive—fixnum nil))

(defun bestof (1 > key result max out)
(if (null 1)

(values out max)

(letx ((head (first 1))
(maxl (funcall key head)))

(if (funcall > maxl max)

(bestof (rest 1) > key result maxl (funcall result head))
(bestof (rest 1) > key result max out)))))

(defun best—worst—of (1 &key (key #’identity) (result #’identity))
(if (null 1)
(values)
(let* (min—ist
max—ist
(min most—positive—fixnum)
(max most—negative—fixnum))
(labels ((best—worst (one)
(let ((x (funcall key one)))
(when (< x min)
(setf min x
min—ist (funcall result one)))
(when (> x max)
(setf max x
max—ist (funcall result one))))))
(visit #’best—worst 1)

(values min—ist max—ist min max)))))

A.3.3 data.lisp
Written by Dr. Menzies

s is; utils
;;; about symbols
(defun thingp (x y) (and (symbolp x) (find y (symbol—name x))))
(defun goalp (x)
(if (thingp x (wme—goal xwsx))
(wme—goal sxwsk)
(if (thingp x (wme—neggoal *wx))

(wme—neggoal *xwx)

nil)))
(defun nump (x) (thingp x (wme—num sxwsx)))

(defun knownp (x) (not (eql x (wme—unknown swsx))))
;;; misc

(defun zero (1) (declare (ignore 1)) 0)

(defun noop (&rest 1) (declare (ignore 1)) t)

;555 main

;;; reader

(defun data (&optional f)
(w0)
(load (or f (thefile)))
(funcall (wme—ready *wx))
(funcall (wme—run *wsxk))

(funcall (wme—report xwsx))
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(defmacro deftable (name &rest cols)
‘(setf (wme—table *w=x)

)

(make—table :name ’,name

:cols (mapcar #’make—col ’,cols))))

(defun make—col (col)
(if (nump col)
(make—num :name col :goalp (goalp col))

(make—sym :name col :goalp (goalp col))))

(defun sort—rows ()
(setf (therows) (sort (therows) #'< :key #’row—sortkey)))

(defun defklass (class &optional (tbl (thetable)))
(let ((k (first (member class (theklasses tbl) :key #’klass—name))))
(unless k
(setf (theklasses tbl)
(appendl (theklasses tbl) (setf k (make—klass :name class)))))
)

(defun defrow (1 &optional (tbl (thetable)) &aux (class (car (goals—in—1list 1))))
(incf (klass—n (defklass class tbl)))
(push (make—row :cells 1
:class class
:utility (funcall (theu) class)
:sortkey (+ (randf 0.49)
(position class (theklasses tbl)
:key #’klass—name)))
(therows tbl)))

(defun goals—in—1list (1) (mapcan #’'lgoal—in—list 1 (thecols)))
(defun lgoal—in—list (x c¢) (and (col—goalp c¢) (knownp x) (list x)))

;5 testss

(deftest !data ()
(reset—seed)
(data)

(test (thetable)
" #S (TABLE

— - :NAME_WEATHER
— —— :ROWS_(#S (ROW
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——— :KLASSES_(#S (KLASS_ :NAME_NO_ :N_5) _#S (KLASS_ :NAME_YES_:N_9) )
———:COLS_(#S (SYM. :NAME_FORECAST_ : GOALP_NIL._ : COUNTS_{ hash _of _O_items })
_________ _#5 (SYM.. :NAME_TEMP_. : GOALP_NIL _ : COUNTS_{ hash _of _0_items })
......... —#S (SYM. :NAME_HUMIDTY .. : GOALP_NIL. :COUNTS_{ hash_of _.O_items })
......... _#S (SYM. :NAME_WINDY._ : GOALP_NIL . : COUNTS_{ hash_of_O_items })
_________ _#S (SYM_ :NAME_ | PLAY_ : GOALP_#\! _: COUNTS_{ hash _of _O_items}))
—__:RESULTS_NIL)”))

A.3.4 deftest.lisp
Written by Dr. Menzies

;;; test engine

110
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(defparameter xtestss* nil)
(defmacro deftest (name params &body body)
‘(progn (unless (member ’,name *testsx) (push ’,name *tests=x))

(defun ,name ,params ,@body)))

(let ((pass 0)
(fail 0))
(defun test (want got)
(labels
((white (c) (member ¢ (#\# #\\ #\Space #\Tab #\Newline
#\Linefeed #\Return #\Page) :test #’char=))
(whiteout (s) ;(print (remove—if # white s))
(remove—if #’white s))
(samep (x y) (string= (whiteout (format nil 7”7 (Ta™)” x))
(whiteout (format nil 7”7 (7a™)” y)))))
(cond ((samep want got) (incf pass))
(t (incf fail)
(format t ” "&;_fail_:_expected_"a™%” want)))
got))
(defun tests ()
(labels ((run (x) (format t ” “&;testing._"a™%” x) (funcall x)))
(when xtestsx*
(setf fail 0 pass 0)
(mapcar #’run (reverse xtestsx*))
(format t ” "&;_pass_:_"a_=_"5,1f%."%;-fail .: ."a.=.75,1f%."%"
pass (* 100 (/ pass (+ pass fail)))
fail (% 100 (/ fail (+ pass fail)))))))

(deftest !deftestl (&aux (a 1))
(test (+ a 1) 2))

(deftest !deftest2 (&aux (a 1))
(test (+ a 1) 3))

A.3.5 hash.lisp
Written by Dr. Menzies

(defmacro dohash ((key value hash &optional end) &body body)
‘(progn (maphash #’(lambda (,key ,value)
,@body)
,hash)
Jend))

(defmacro dovalues ((value hash &optional end) &body body)
(let ((key (gensym)))
‘(progn (maphash #’(lambda (,key ,value)
(declare (ignore ,key))
,@body)
,hash)
send)))

(defmethod print—object ((h hash—table) str)
(format str ”"{hash_of_"a_items}” (hash—table—count h)))

(defun showh (h &key
(indent 0) (stream t) (before ””) (after ”7)
(if—empty ”empty”)
(show #’(lambda (x)

(format stream ”“a a.=_"a %"
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(nchars indent) (first x) (rest x))))
(1t #1¢))
(if (zerop (hash—table—count h))
(format stream 7~
(let (1)
(format stream ”~a” before)
(maphash #’(lambda (k v) (push (cons k v) 1)) h)
(mapc show
(sort 1 #’(lambda (a b)
(funcall 1t (car a) (car b)))))

a” after)

a“a"a” before if—empty after)

”» ~

(format stream

h)))

A.3.6 lib.lisp
Written by Dr. Menzies

(defun appendl (a b) (append a (list b)))
;(defun abs (z) (if (< = 0) (x —1 z) x))

(defun sum (1)
”Computes_the_sum_of_a_list —of -numbers.”
(let ((sum 0))

(dolist (x 1 sum)

(incf sum x))))

(defun mean (&rest nums)
(/ (apply #+ nums)
(length nums)))

(defun median (1 &optional (n (length 1)))
(let* ((sorted (sort 1 #'<))
(midv (floor (/ n 2)))
(midpos (nth midv sorted)))
(if (oddp n)
midpos
(mean midpos
(nth (1— midv) sorted)))))

(defun It (x y)

(string< (format nil ”7a”

x) (format nil ”7a” y)))

(defun flatten (lis)
”Removes_nestings._from_a_list .”
(cond
((atom lis) lis)
((listp (car lis)) (append (flatten (car lis))
(flatten (cdr lis))))
(t (append (list (car lis))
(flatten (cdr lis))))))

(defun nchars (n &optional (char #\Space))
(with—output—to—string (s)
(dotimes (i n)

» ~

(format s a” char))))

(defun visit (f 1)
(if (atom 1)

(funcall f 1)

(dolist (x 1)
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(visit f x))))

(defun percentiles (1 &optional (collect (0 25 50 75 100)))
”one-_pass_through_a_list —of _nums_to_’collect ’_some_percentiles”
(let* (out

last
(size (length 1)))
(doitems (one pos 1 out)
(if (null collect)
(return—from percentiles out))
(let ((want (first collect))
(progress (x 100.0 (/ (14 pos) size))))
(if (>= progress want)
(push (cons (pop collect)
(if (= progress want)
one
(mean one (or last one))))
out)))
(setf last one))))

(deftest !percentiles ()
(test
(percentiles (1 2 3 4 5 6 7 8 9 10)
(0 25 50 75 100)

)
'((100 . 10)
(75 . 15/2)
(50 . 5)
(25 . 5/2)
(0 . 1))))

A.3.7 hash.lisp
Written by Dr. Menzies

; list of tricks that,net year, i will move into lib

(defun rands (&optional (thing ”thing”))
(intern

(format nil ” 7:@Q("a”)—"a” thing (randi 1000000000))))

(defmacro dokeys ((key hash &optional end) &body body)
(let ((value (gensym)))
‘(progn (maphash #’(lambda (,key ,value)
(declare (ignore ,value))
,@body)
,hash)
yend) ) )

A.3.8 macros.lisp
Written by Dr. Menzies

(defmacro oo (&rest 1)
‘(progn (terpri) (o ,@l)))

(defmacro o (&rest 1)
(let ((last (gensym)))
‘(let (,last)
,@(mapcar #’(lambda(x) ‘(setf ,last (oprim ,x))) 1)
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(terpri)
ylast)))

(defmacro oprim (x)

‘(progn (format t ” " &["a]=["a]-” (quote ,x) ,x) ,x))

(Defmacro doitems ((one n list &optional out) &body body )
‘(let ((,n —1))
(dolist (,one ,list ,out)
(incf ,n)
,@body) ) )

(defmacro dol2 ((one two list &optional out) &body body)
‘(let ((,one (car ,list)))
(dolist (,two (cdr ,list) ,out)
,@body
(setf ,one ,two))))

A.3.9 profile.lisp
Written by Dr. Menzies

;55; profiling tricks
(defmacro time—it (n &body body)
(let ((nl (gensym))
(i (gensym))
(t1 (gensym)))
‘(let ((,nl ,n)
(,t1 (get—internal—run—time)))
(dotimes (,i ,nl) ,@body)
(float (/ (— (get—internal—run—time) ,tl1)

(* ,nl internal—time—units—per—second))))))

(defun test—time—it (&key (repeats 100) (loops 100) (max 10))
(let (out)
(dotimes (i loops)
(push (random max) out))
(time—it repeats
(apply #+ out))))

(defmacro watch (code)
‘(progn
(sb—profile: unprofile)
(sb—profile:reset)
(sb—profile: profile ,@(my—funs))
(eval ,code)
(sb—profile:report)
(sb—profile: unprofile)
t)
)

(defun my—funs ()
(let ((out °()))
(do—symbols (s)
(if (and (fboundp s)
(find—symbol (format nil ”~a” s) xpackagex)
(not (member s (lisp—funs))))
(push s out)))

out))
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(defun lisp—funs () ’(
* % k% kkk + + A+ +++——/ / // /// 1+ 1- < <= = > >= abort abs
acons acos acosh add—method adjoin adjust—array adjustable—array—p
alpha—char—p alphanumericp alter always and append append appending
apply applyhook xapplyhook* apropos apropos—list aref arithmetic—error
arithmetic—error—operands arithmetic—error—operation array—dimension
array —dimension—limit array—dimensions array—element—type
array —has—fill—pointer—p array—in—bounds—p array—rank array—rank—limit
array —row—major—index array—total—size array—total—size—limit arrayp
as ash asin asinh assert assert assoc assoc—if assoc—if—not atan
atanh atom augment—environment bit bit—and bit—andcl bit—andc2
bit—eqv bit—ior bit—nand bit—nor bit—not bit—orcl bit—orc2 bit—vector—p
bit—xor block boole both—case—p boundp break break xbreak—on-—signals=*
*break—on—warnings* broadcast—stream—streams butlast byte byte—position
byte—size caaaar caaadr caaar caadar caaddr caadr caar cadaar cadadr
cadar caddar cadddr caddr cadr call—-arguments—limit call—-method
call—next—method car case catch catenate ccase ccase cdaaar cdaadr
cdaar cdadar cdaddr cdadr cdar cddaar cddadr cddar cdddar cddddr
cdddr cddr cdr ceiling cell—error cell—error—name cerror cerror
change—class char char—bit char—bits char—bits—limit char—code
char—code—1limit char—control—bit char—downcase char—equal char—font
char—font—1limit char—greaterp char—hyper—bit char—int char—lessp
char—meta—bit char—name char—not—equal char—not—greaterp char—not—lessp
char—super—bit char—upcase char/= char< char<= char= char> char>=
character characterp check—type check—type choose choose—if chunk
cis class—name class—of clear—input close clrhash code—char coerce
collect collect collect—alist collect—and collect—append collect—file
collect —first collect—fn collect—hash collect—last collect—length
collect—max collect—min collect—nconc collect—nth collect—or
collect—plist collect—sum collecting collecting—fn commonp compile
compile—file compile—file—pathname sxcompile—file—pathnamesx
«compile—file—truenamex *xcompile—print* xcompile—verbosex
compiled—function—p compiler—let compiler—let compiler—macro—function
compiler—macroexpand compiler—macroexpand—1 complement complex
complexp compute—applicable—methods compute—restarts concatenate
concatenated —stream—streams cond condition conjugate cons consp
constantp continue control—error copy—alist copy—list copy—pprint—dispatch
copy—readtable copy—seq copy—symbol copy—tree cos cosh cotruncate
count count count—if count—if—not counting ctypecase ctypecase
xdebug—io*x xdebugger—hookx* decf declaim declaration—information
declare decode—float decode—universal—time xdefault—pathname—defaultssx*
defclass defgeneric define—compiler—macro define—condition
define—declaration define—method—combination define—modify —macro
define—setf—method defmacro defmethod defpackage defstruct deftype
defun defvar delete delete—duplicates delete—file delete—if
delete—if—not delete—package denominator deposit—field describe
describe—object destructuring—bind digit—char digit—char—p directory
directory —namestring disassemble division—by—zero do do dox
do—all-symbols do—external—symbols do—symbols documentation
documentation doing dolist dotimes double—float—epsilon
double—float —negative—epsilon dpb dribble ecase echo—stream—input—stream
echo—stream—output—stream ed eighth elt encapsulated enclose
encode—universal—time end—of—file endp enough—namestring
ensure—generic—function eq eql equal equalp error error error
kerror—output* etypecase etypecase eval eval—-when evalhook s*xevalhookx
evenp every exp expand export expt fboundp fdefinition xfeaturessx
ffloor fifth file—author file—error file—error—pathname file—length
file—namestring file—position file—string—length file—write—date
fill fill—pointer finally find find—all—symbols find—class find—if
find—if—not find—method find—package find—restart find—symbol
finish—output first flet float float—digits float—precision float—radix
float—sign floating—point—overflow floating—point—underflow floatp

floor for format formatter fourth funcall function function—information
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function—keywords function—lambda—expression functionp gatherer
gathering gcd generator generic—flet generic—function generic—labels
gensym xgensym-—counterx gentemp get get—decoded—time get—internal—real—time
get—internal—run—time get—output—stream—string get—properties
get—setf—method get—setf—method—multiple—value get—universal—time

getf gethash go graphic—char—p handler—bind handler—case hash—table—count
hash—table—p hash—table—rehash—size hash—table—rehash—threshold
hash—table—size hash—table—test host—namestring identity if if
ignore—errors imagpart import in—package in—package incf
initialize—instance initially input—stream—p inspect int—char
integer—decode—float integer—length integerp interactive—stream—p
intern internal—time—units—per—second intersection invalid—method—error
invoke—debugger invoke—restart isqrt iterate keywordp lambda—list—keywords
lambda—parameters—1limit last latch lem ldb ldb—test 1diff

least —negative—double—float least—negative—long—float

least —negative—normalized —double—float least—negative—normalized—long—float
least —negative—normalized —short—float

least —negative—normalized —single—float least—negative—short—float

least —negative—single—float least—positive—double—float

least —positive—long—float least—positive—normalized—double—float

least —positive—normalized —long—float least—positive—normalized—short—float
least —positive—normalized —single—float least—positive—short—float

least —positive—single—float length let letx lisp—implementation—type
lisp—implementation—version list listx list—all—packages list—length
listen listp load load—logical—pathname—translations xload—pathnamex
*load —print* load—time—value xload—truenamex xload—verbosex locally
locally log logand logandcl logandc2 logbitp logcount logeqv
logical—pathname logical—pathname logical—-pathname—translations

logior lognand lognor lognot logorcl logorc2 logtest logxor
long—float—epsilon long—float—negative—epsilon long—site—name loop
loop—finish lower—case—p machine—instance machine—type machine—version
macro—function macroexpand macroexpand—1 smacroexpand—hook* make—array
make—broadcast—stream make—char make—concatenated—stream make—condition
make—dispatch—macro—character make—echo—stream make—hash—table
make—instance make—instances—obsolete make—list make—load—form
make—load —form—saving—slots make—package make—pathname make—random—state
make—sequence make—string make—string—input—stream
make—string—output—stream make—symbol make—synonym—stream
make—two—way—stream makunbound map map—fn map—into mapc mapcan

mapcar mapcon maphash mapl maplist mapping mask mask—field max

maximize maximizing member member—if member—if—not merge merge—pathnames
method—combination—error method—qualifiers min mingle minimize
minimizing minusp mismatch mod *modules* most—negative—double—float
most—negative—fixnum most—negative—long—float most—negative—short—float
most—negative—single—float most—positive—double—float most—positive—fixnum
most—positive—long—float most—positive—short—float
most—positive—single—float muffle—warning multiple—value—bind
multiple—value—call multiple—value—1list multiple—value—progl
multiple—value—setq multiple—values—limit name—char named namestring
nbutlast nconc nconc nconcing never next—in next—method—p next—out

nil nintersection ninth no—applicable—method no—next—method not

notany notevery nreconc nreverse nset—difference nset—exclusive—or
nstring—capitalize nstring—downcase nstring—upcase nsublis nsubst
nsubst—if nsubst—if—not nsubstitute nsubstitute—if nsubstitute—if—not
nth nth—value nthedr null numberp numerator nunion oddp off—line—port
open open—stream—p optimizable—series—function or output—stream—p
*packagex package—error package—error—package package—name
package—nicknames package—shadowing—symbols package—use—list
package—used—by—list packagep pairlis parse—integer parse—macro
parse—namestring pathname pathname—device pathname—directory
pathname—host pathname—match—p pathname—name pathname—type
pathname—version pathnamep peek—char phase pi plusp pop position

position—if position—if—not positions pprint—dispatch
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pprint—exit—if—list —exhausted pprint—fill pprint—indent pprint—linear
pprint—logical—block pprint—newline pprint—pop pprint—tab pprint—tabular
previous prinl sprint—array* sprint—basex *print—casex xprint—circlex
sprint—escape* *print—gensyms* sprint—length* sxprint—level* sxprint—linessx
sprint—miser—width* print—object *print—pprint—dispatch* sprint—pretty=
sprint—radix* sxprint—readablys* *xprint—right—marginx print—unreadable—object
probe—file proclaim producing prog prog* progl prog2 progn program-—error
progv propagate—alterability provide psetf psetq push pushnew

xquery —iox quote random xrandom-—statex random—state—p rassoc rassoc—if
rassoc—if—not rational rationalize rationalp read s*xread—basex

read—byte read—char read—char—no—hang xread—default—float—formatx

read —delimited —list *read—eval* read—from—string read—line

read —preserving—whitespace *read—suppress* *readtable* readtable—case
readtablep realp realpart reduce reinitialize—instance rem remf
remhash remove remove—duplicates remove—method remprop rename—file
rename—package repeat replace require rest restart restart—bind

restart —case restart—name result—of return return return—from
revappend reverse room rotatef round row—major—aref rplaca rplacd

sbit scale—float scan scan—alist scan—file scan—fn scan—fn—inclusive
scan—hash scan—lists—of—lists scan—lists—of—lists—fringe scan—multiple
scan—plist scan—range scan—sublists scan—symbols schar search second
series series series—element—type serious—condition set set—char—bit
set—difference set—dispatch—macro—character set—exclusive—or
set—macro—character set—pprint—dispatch set—syntax—from—char setf

setq seventh shadow shadowing—import shared—initialize shiftf
short—float—epsilon short—float—negative—epsilon short—site—name

signal signum simple—bit—vector—p simple—condition
simple—condition—format—arguments simple—condition—format—string
simple—error simple—string—p simple—type—error simple—vector—p
simple—warning sin single—float—epsilon single—float—negative—epsilon
sinh sixth sleep slot—boundp slot—exists—p slot—makunbound slot—missing
slot—unbound slot—value software—type software—version some sort
special—form—p split split—if sqrt stable—sort standard—char—p
xstandard—input* *xstandard—outputx step storage—condition store—value
stream—element—type stream—error stream—error—stream stream—external—format
streamp string string—capitalize string—char—p string—downcase
string—equal string—greaterp string—left—trim string—lessp
string—not—equal string—not—greaterp string—not—lessp string—right—trim
string—trim string—upcase string/= string< string<= string= string>
string>= stringp sublis subseq subseries subsetp subst subst—if
subst—if—not substitute substitute—if substitute—if—not subtypep

sum summing sxsuppress—series—warnings* svref sxhash symbol—function
symbol—macrolet symbol—name symbol—package symbol—plist symbol—value
symbolp synonym-—stream—symbol t tagbody tailp tan tanh tenth
sterminal—io* terminate—producing terpri the thereis third throw

time to—alter trace xtrace—output* translate—logical—pathname
translate—pathname tree—equal truename truncate two—way—stream—input—stream
two—way—stream—output—stream type—error type—error—datum
type—error—expected—type type—of typecase typep unbound-—variable
undefined —function unexport unintern union unless unless unread—char
until until—if untrace unuse—package unwind—protect
update—instance—for—different—class update—instance—for—redefined—class
upgraded —array —element—type upgraded—complex—part—type upper—case—p
use—package use—value user—homedir—pathname values values—list
variable—information vector vector—pop vector—push vector—push—extend
warn warning when when while wild—pathname—p with with—accessors
with—added—methods with—compilation—unit with—condition—restarts
with—hash—table—iterator with—input—from—string with—open—file
with—open—stream with—output—to—string with—package—iterator
with—simple—restart with—slots with—standard—io—syntax write
write—byte write—char write—string write—to—string y—or—n—p yes—or—no—p
zerop unprofile reset report profile stream—read—char—no—hang

stream—fresh—line stream—peek—char stream—write—char stream—write—byte
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stream—write—string stream—line—column stream—write—sequence
stream—read—byte stream-—read—line stream—line—length stream—read—sequence
stream —read —char stream—clear—output stream—unread—char stream—clear—input
stream —finish—output stream—start—line—p stream—force—output
stream—terpri stream—advance—to—column stream—file—position

stream—listen weak—pointer—p package—locked—p step—condition—result
native—pathname defconstant—uneql—new—value defconstant—uneql—name
cancel—finalization purify process—status—hook process—output
timer—scheduled—p package—lock—violation process—plist interactive—eval
list —all—timers process—p process—status get—bytes—consed process—error
defconstant —uneql—old —value hash—table—weakness step—next
package—implements—list float—nan—p octets—to—string with—unlocked—packages
enable—debugger float—denormalized—p with—timeout
package—locked—error—symbol process—pid package—implemented—by—list
process—pty posix—getenv step—condition—args gc—off finalize

without —package—locks unschedule—timer schedule—timer make—timer
native—namestring parse—native—namestring float—infinity—p lock—package
process—kill process—exit—code step—continue string—to—octets
unlock—package quit process—alive—p remove—implementation—package
find—executable—in—search—path weak—pointer—value process—wait
disable—debugger process—core—dumped define—source—context
add—implementation—package run—program process—close step—condition—form
posix—environ timer—name process—input bytes—consed—between—gcs

gc—on make—weak—pointer save—lisp—and—die describe—compiler—policy
step—into gc float—trapping—nan—p truly—the internal—debug
frame—has—debug—tag—p backtrace—as—list arg var backtrace
unwind—to—frame—and—call slot alien—funcall def—alien—variable deref
addr with—alien load—shared—object define—alien—routine def—alien—routine
make—alien free—alien alien—sap cast get—errno load—foreign sap—alien
def—alien—type null—alien define—alien—type define—alien—variable
extern—alien load—1—foreign alien—size clear—output print princ—to—string
defsetf remove—if—not vectorp print—not—readable—object copy—structure
read —sequence get—dispatch—macro—character define—setf—expander
fmakunbound write—sequence constantly labels prinl—to—string
get—setf—expansion defconstant simple—condition—format—control
ensure—directories—exist unbound—slot—instance /= get—macro—character
allocate—instance remove—if array—displacement fceiling special—operator—p
force—output princ lambda invoke—restart—interactively ftruncate

fround write—line macrolet define—symbol—macro pprint fresh—line
defparameter

)

A.3.10 random.lisp
Written by Dr. Menzies

;;; random stuff

(letx ((seedO 10013)
(seed seed0)
(multiplier 16807.0d0)
(modulus 2147483647.0d40))
(defun reset—seed () (setf seed seed0))
(defun randf (n) (* n (— 1.0d0 (park—miller—randomizer))))
(defun randi (n) (floor (* n (/ (randf 1000.0) 1000))))

(defun park—miller—randomizer ()
Pcycle=.2,147,483,646 _numbers”
(setf seed (mod (* multiplier seed) modulus))
(/ seed modulus))
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(deftest !rands ()
(reset—seed)
(dotimes (i 11) (randf 100))
(test (randf 100) 8.386648357094572d0)
(reset—seed)
(test (randf 100) 92.16345646053713d0))

A.3.11 structs.lisp
Written by Dr. Menzies

;;i; macros

(defmacro ! (&rest 1) ‘(funcall (wme—! xwx) ’,1))

(defmacro theu () ‘(wme—utility —function sxwsx))

(defmacro thefile O ‘(wme—file =xwsx))

(defmacro thetable ) ‘(wme—table xwx))

(defmacro thecols (&optional tbl) ‘(table—cols (or ,tbl (wme—table *xw=x))))
(defmacro thename (&optional tbl) ‘(table—name (or ,tbl (wme—table *wx))))
(defmacro therows (&optional tbl) ‘(table—rows (or ,tbl (wme—table *w=x))))

(defmacro theklasses (&optional tbl) ‘(table—klasses (or ,tbl (wme—table xwx))))

;55 structs
(defstruct result target (a 0) (b 0) (c 0) (d 0) acc pf prec pd f details)
(defstruct table name rows klasses cols results hpipes)
(defstruct row cells class utility sortkey)
(defstruct col name goalp)
(defstruct klass (name ’()) (n 0))
(defstruct (sym (:include col)) (counts (make—hash—table :test ’equal)))
(defstruct (num (:include col))
(n 0)
(sum 0)
(sumsq 0)
(min most—positive—fixnum)

(max most—negative—fixnum)

)

(defstruct wme
(goal #\1)
(neggoal #\#)
(num #\8)
(unknown #\7)
(file ?../data/discrete—lisp /weather.lisp”)
(utility —function #’zero)
(! # defrow)
(ready #’sort—rows)
(run #'noop)
(report #’noop)
table

)

(defstruct rig
(preprocess #’noop)
(train #’noop)
(ready #’noop)
(tester #’moop)
(reporter #’noop))

;55; globals

(defparameter *ws* nil)
(defun w0 () (setf xwx (make—wme)))
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;5 utils

(defun klass.majority (tbl)
"return_the_symbol_of_the_largest_.class”
(maxof (table—klasses tbl) :key #’klass—n :result #’klass—name))

(defun klass.all (tbl &aux out)
(mapcar #’klass—name (table—klasses tbl)))

A.3.12 trapezoid.py

# Quick and dirty script to calculate area wunder the curve

#

def parse(line):
out = [];
if len(line.split(”."))<2:
return —99;
else:
for x in line.split(”.”)[0:2]:
out.append(int(x)/100.0);

return out;

#IT’S A
def trap(xl, yl, x2, y2):
if (x1 > x2):
print ”Danger_Will _Robinson!_Danger!”
print x1;
return .5x(yl4y2)*(x2—x1);

infile = open(raw_input(” File_name:_."));
data = [[0,0]];
s = 0;
for line in infile:
if not (parse(line)) == —99:

data.append(parse(line));
data.append ([data[ —1][0],1.0]);

for i in range (0, (len(data)—1)):
s = s + trap(data[i][1], data[i][0], data[i+1][1], data[i+1][0]);

A.4 Data

A sample of Lisp data.

A.4.1 weather.lisp

( deftable $weather
forecast $temperature

$humidity windy !class)
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! sunny 85 85 FALSE no)

! sunny 80 90 TRUE no)

! overcast 83 86 FALSE yes)
! rainy 70 96 FALSE yes)

! rainy 68 80 FALSE yes)

! rainy 65 70 TRUE no)

! overcast 64 65 TRUE yes)
! sunny 72 95 FALSE no)

! sunny 69 70 FALSE yes)

! rainy 75 80 FALSE yes)

! sunny 75 70 TRUE yes)

! overcast 72 90 TRUE yes)
! overcast 81 75 FALSE yes)
! rainy 71 91 TRUE no)

P e N N N e e e e

A sample of defect prediction data.

A.4.2 pbeans.lisp

(deftable pbeans—a $wmc $dit $noc $cbo $rfc $lcom $ca $ce $npm $lcom3 $loc $dam $moa $mfa $cam $ic

$cbm $amc $max_cc $avg_cc !bug)

(! 2037112123300 0.981132075 0.6 1 1 15.5 1 0.5 1)

(! 107 21 016 4 0.333333333 96 1 0 0 0.583333333 0 0 22.5 1 0.75 2)
(! 2024102222500 0.944444444 1 0 0 11.5 1 0.5 1)

(! 10310211210001000110)

(! 105 10501210001000110)

(! 107 82852828000 0.339285714 0 0 0 1 1 1)

(! 10879806 0.4 43 10 0 0.433333333 0 0 5.666666667 1 0.5 1)

(!
(!
(!
(!
(!

7 1 3 13 122 283 7 9 11 0.880769231 1394 1 1 0 0.190883191 0 0 50.25925926 2 1.037 4)
24 0 2 1 4 0.642857143 235 1 0 0 0.375 0 0 27.625 1 0.875 1)

15 5 4 0 7 0.25 97 1 0 0 0.371428571 1 1 12.57142857 4 1.1429 1)

6 3213218 001 0.777777778 0 0 5 0 0 0)

6 15256 26 0000.5000111)

(! 2011125001100400 2)

(! 8 15 1 2 6 0.833333333 34 1 2 0 0.357142857 0 0 3.428571429 1 0.8571 2)

(! 74 1 0 18 185 2517 6 16 21 0.894216134 2390 1 2 0 0.152296535 0 0 31.05405405 5 1.2297 4)
(! 24 9 34 7 0 202 1 1 0 0.428571429 0 0 27.71428571 1 0.8571 2)

(! 17 3003275000 0.5 00 24 1 0.6667 0)

(! 6 3703218 00 1 0.777777778 0 0 5 0 0 0)

(! 13 6 1 2 2 2 62 0 0 0.945454545 0.357142857 0 0 14.5 3 1.5 2)

(! 15 10 2 0 9 0.416666667 106 1 0 0 0.4 1 1 10.44444444 5 1.1111 1)

(! 12 1 0 0 25 48 0 0 12 0.787878788 159 1 0 0 0.333333333 0 0 12 1 0.8333 1)

(! 13 6 1 2 2 2 73 0 0 0.945454545 0.458333333 0 0 17.25 2 1 3)

(! 39 13 6 0.75 446 1 0 0 0.404761905 0 0 62.42857143 27 5.1429 4)

(! 0.6 34 1 0 0 0.555555556 0 0 4.333333333 1 0.6667 0)

(! 2 11 0 0 0.944444444 0.75 0 0 4.5 1 0.5 1)

(! 200000000O0O0OTO0T1)
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L R
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A.4.3 schaffer.lisp

A sample of mathematical model data. generation.

;Note: The size of this file was decrease dramatically for space

(deftable $schaffer $x0 $#f1 $#f2)

(! —25.094492134905096d0 629.7335355088137d0 734.1115040484341d0)
(! —73.8554229182979d0 5454.623494440643d0 5754.045186113835d0)

(! —38.871580355058654d0 1510.999759299782d0 1670.48608072001664d0)
(! —57.8928146283568d0 3351.5779855932833d0 3587.1492441067107d0)
(! —120.73587864032363d0 14577.152391050957d0 15064.095905612252d0)
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(! —161.0116283966359d0 25924.74447893637d0 26572.79099252291d0)

(! —101.17416859971824d0 10236.212391844212d0 10644.909066243086d0)
(! —142.2732371245225d0 20241.674001890606d0 20814.766950388697d0)
(! —93.331372316166d0 8710.745058418797d0 9088.070547683461d0)

(! —106.89018582181814d0 11425.511825022812d0 11857.072568310083d0)
(! —110.38906575795832d0 12185.745838914847d0 12631.30210194668d0)
(! —48.22683878313629d0 2325.8279790146184d0 2522.7353341471635d0)

A.4.4 poiwhich.txt

A sample input to the Area Under Curve Python Script. ”poiwhich” means the
results from using the By heuristic measure on the poi dataset.

10
30

22 8
35 13
35 15
52 31
53 32
93 76
97 81
98 86
98 90
99 90
100 91
100 91
100 98
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